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Abstract

The production of fibre composite components using the Automated Fibre Placement
(AFP) process is often confronted by manufacturing-related defects, such as gaps or over-
laps between tapes. These defects can influence the material properties in different ways,
depending on their characteristics. While the Finite Element (FE) Method can be used
to investigate these effects, it requires expert knowledge and significant computational
resources. The aim of this work is therefore to predict the mechanical properties using
machine learning (ML) methods trained on compression tests simulated with LS-DYNA.
First, an FE modelling approach and material model are developed with the goal of min-
imising both computation time and deviation from experimental test data. Subsequently,
1000 FE models are generated with random defect configurations by varying parameters
such as position, size, and number of defects with the help of a developed Python routine.
Two different ML methods, namely Random Forest (RF) and Support Vector Regression
(SVR), are then applied and further improved in terms of their performance. Both mod-
els achieved promising results, with stiffness and strength predictions reaching a Mean
Absolute Percentage Error (MAPE) of 3 to 7%. However, the prediction of post-failure
behaviour showed limited accuracy, with a MAPE of around 50% due to numerical issues.
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Symbols

Symbols

a Acceleration
b Bias in H in SVR
b Body forces
B Number of trees in a RF
C Constant for slack variables in SVR
C Green deformation tensor, damping matrix
D Dataset
{e1, e2, e3} Orthonormal basis of R3

ec, ed Failure modes for MAT_54
E Material strain tensor
E,E1, E2 Young’s modulus
f Body force density
F ,Fe Deformation gradient
G12 Shear modulus
H Mapping from x to y
K Kernel
Ke Finite element
K̂ Reference element
M Mass matrix
n Unit normal vector
N Number of samples in D
NI Shape function
p Number of features
P Time dependent prescribed loads
R Vector of internal forces
S Compliance matrix
t Time
t Force per unit area
T End time simulation
u Displacement
v (spatial) Velocity
V Relative Volume
V Material velocity
w Weight vector in H in SVR
x Spatial points
x,xi Features
X Material points
y, yi Target variable
ŷ, ŷi Predicted value for target variable
αi, α

∗
i Lagrange multipliers

γ Shear strain, parameter for RBF kernel
ν12, ν21 Poisson’s ratio
ξ Coordinates of reference element
ρ Density
∆t Time step
∆tmax Maximum time step for implicit time integration
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Symbols

ϵ Strain, error margin for SVR
ϵ Linearized strain tensor
ζ, ζ∗ Slack variables
σ Cauchy stress tensor
τ Shear stress
ϕ Configuration or deformation, mapping of x
ψ Test function
Ω Body, set in R3

C, C(Ω) Set of all configurations of Ω
EA MAT_54: Longitudinal elastic modulus
EFS MAT_54: Effective Failure Strain
SC MAT_54: Shear Strength
SLIMC1 MAT_54: Factor for minimum stress (fibre compres-

sion)
SLIMC2 MAT_54: Factor for minimum stress (matrix com-

pression)
SLIMS MAT_54: Factor for minimum stress (shear)
XC MAT_54: Longitudinal compressive strength
Y C MAT_54: Transverse compressive strength
Y CFAC MAT_54: Strength reduction factor
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1 Introduction

1 Introduction

Automated Fibre Placement (AFP) is an advanced manufacturing method for Carbon
Fibre Reinforced Plastics (CFRP) aerospace components. This technique offers great
potential in reducing manufacturing time and costs. However, complex geometries can
lead to gaps or overlaps between the tapes, which are not corrected during the manu-
facturing process. These defects can significantly impact the mechanical properties of
the component [1]. Therefore, a method is needed to quickly assess whether a component
with a defect still meets quality requirements and to predict all the mechanical properties.

One approach is the use of Finite Element (FE) simulations, but they are too time-
consuming in this case. First, a suitable simulation model with a mesh representing the
sample and a validated material model has to be set up. Then, the model must be simu-
lated at best on a workstation with high computing power, followed by post-processing to
obtain the desired mechanical properties. All these steps take time and expertise in FE
simulation. Additionally, access to the workstation is not always available during produc-
tion, which would increase the simulation time further. Therefore, a different method is
needed for predicting the mechanical properties in real-time.

An alternative approach is the use of Machine Learning (ML) methods. These algorithms
can analyse and determine complex non-linear relationships between input properties
based on existing information. Once trained, ML models provide real-time results with
low computational power requirements. Unlike FE simulations, they require no expert
knowledge and can be integrated into a user-friendly software [2], [3]. The ML models
can be trained with experimental test data, but they are expensive and labour intensive
to acquire. Additionally, experimental data is prone to errors arising from testing inaccu-
racies or machine related issues. Training the ML model with simulation data is another
method, which offers advantages such as reduced material consumption and equipment
requirements.

The objective of this thesis is to develop a ML model that can predict the mechanical
properties of tape-layered samples with defects based on compression tests. Compression
properties are critical design parameters for CFRP components because these components
must withstand crash and impact events [4]. The ML model can serve as the basis for
a manufacturing tool that quickly determines whether a component with defects is still
usable or not. The ML model will be trained on simulation results, enabling the creation
of a larger and more comprehensive dataset. The simulation models must be robust,
validated and computationally efficient to generate sufficient and high quality data in
the limited time span of this work. Random Forest (RF) and Support Vector Regres-
sion (SVR) models are chosen because of their promising results in previous studies, as
will be discussed in Section 2.6. Feature engineering and hyperparameter optimization
will be employed to further enhance model performance.

The thesis begins by introducing the necessary theoretical fundamentals for AFP (Sec-
tion 2.1), FE simulation (Section 2.2) and ML (Section 2.5). Then, the development of
the simulation model in LS-DYNA is described, involving the set up of a implicit simu-
lation and the optimization of the material model to experimental results. Afterwards,
the process of generating the dataset from simulation results for various specimens is
depicted, which is analysed for outliers or unusual behaviour. The subsequent section
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1 Introduction

covers the development, training and evaluation of the RF and SVR models. It involves
feature engineering and a hyperparameter optimization to improve the performances of
the models. The final section will apply these models to unknown datasets and conduct
a short study to investigate the impact of different defects on sample behaviour.
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2 Fundamentals

2 Fundamentals

In this section, the fundamental concepts relevant to this thesis are presented. They
provide background information necessary to establish a simulation in LS-DYNA for tape-
layered specimens and for developing a ML model for a regression problem to predict the
mechanical properties of the samples.

2.1 In-situ Automated Fibre Placement and Defects

AFP is an additive manufacturing process for producing large-scale and lightweight com-
posite structures made from CFRP. It is commonly used in the aerospace industry.
During this process, a robot-guided placement head lays narrow Unidirectional (UD)
prepreg tapes into a mould of the desired geometry, making it a fast production method
for composite components. Figure 2.1 illustrates the placement head for AFP manufac-
turing. Additionally, AFP has minimal material waste because each tape can be cut
individually and it is flexible regarding fibre orientation along load direction. Traditional
manufacturing methods typically require parts to be cured using an autoclave. However,
thermoplastic in-situ AFP skips this as it enables the production of components in a single
step by integrating in-line quality assurance methods [4], [5].

Figure 2.1: Placement head for AFP [6]

One challenge of in-situ AFP is the production of parts with complex shapes. The cur-
vatur of the surface can lead to defects in AFP-manufactured structures, which are not
corrected during production and cannot be mitigated by subsequent autoclave or press-
consolidation processes. Therefore, Sacco et al. [7] have already employed a ML model for
AFP manufacturing to identify and classify defects based on vision. During production,
this method is used for quality assessment. The three independent factors fibre angle
deviation, fibre steering and gap or overlap defects determine the type and magnitude of
the defects [8].

The effects of defects in AFP-manufactured components have been studied by various
researches. For example, Raps et al. [8] conducted tensile and compression tests for
AFP laminates with gap defects. The results showed that the tensile strength remained
unaffected, while the compression strength decreased for the specimens with gap defects.
In a subsequent study, Raps et al. [1] successfully mitigated the effects of gap defects on
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2 Fundamentals

the compressive strength by filling the gaps with fused granular fabrication. Other studies
have shown that overlaps do not have a significant impact on strength and stiffness in
tension and compression tests [4], [5]. The defects can have a rectangular or a triangular
geometry, which occur in double-curved parts. Triangular defects also induce a fibre angle
deviation [1]. Figure 2.2 displays the triangular and rectangular defects with gaps and
overlaps.

tape

overlap

gap

Triangular Defects

tape

overlap

gap

Rectangular Defects

Figure 2.2: Illustration of the different defects (adapted from [6])

2.2 Mathematical Foundations

In this section, the necessary mathematical foundations are presented for establishing a
structural-mechanical problem and solving it using the FE method.

Definition 2.1 ([9]). A tensor T is a linear map between two vector spaces V and W
with

T : V → W ,

v 7→ w = Tv, v ∈ V , w ∈ W ,

T (u+ v) = Tu+ Tv,

T (αu) = αTu.

A special tensor is the dyad consisting of vectors defined in V and W

T = a⊗ b, a ∈ W , b ∈ V .

2.2.1 Kinematics of Bodies

In the context of this problem, the Lagrangian description is employed, and we assume
a three-dimensional Euclidean space denoted as R3, with an origin o and an orthonormal
basis {e1, e2, e3}. We consider a body Ω ⊂ R3, where Ω is the closure of an open set
in R3 with piecewise smooth boundary. The points within Ω are referred to as material
points and denoted as X = (X1, X2, X3) ∈ Ω. In contrast, points in R3 are denoted as
x = (x1, x2, x3) ∈ R3, and are named spatial points [10], [11]. The relationship between
the following definitions is illustrated in Figure 2.3.

Definition 2.2 ([10]). Let Ω ⊂ R3 be a body. A configuration or a deformation of
Ω is a mapping ϕ : Ω → R3. The set of all configurations of Ω is denoted C(Ω) or C. It
follows x = ϕ(X).
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2 Fundamentals

e3

e2

e1

o

Ω

X
n

dA dV

ϕ(Ω)

x

ϕ(X)

u(X)

Figure 2.3: Geometry of a deformation (adapted from [11])

Definition 2.3 ([10]). The motion of body Ω is defined as a curve in C, which is a
time-dependent family of configurations. It is represented by a mapping t → ϕt ∈ C of R
to C. We write x = ϕ(X, t).

Definition 2.4 ([10]). The material velocity V t : Ω→ R3 of the motion is defined by

V t(X) = V (X, t) =
∂ϕ(X, t)

∂t
.

If ϕt is a C1 regular motion, the spatial velocity v : ϕt(Ω)→ R3 of the motion is given
by

vt = V t ◦ ϕ−1
t .

Definition 2.5 ([10]). The vector field u : Ω× [0, T ]→ R3 on Ω is called the displace-
ment and defined by

u(X, t) = ϕ(X, t)−X.

Definition 2.6 ([10]). The deformation gradient F of ϕ is a two point tensor. It is
given by

F = Dϕ, Fij =
∂ϕi
∂Xi

.

Definition 2.7 ([10]). The (Green) deformation tensor or right Cauchy-Green tensor
C is denoted as

C = F⊤F .

Definition 2.8 ([10]). The material strain tensor E is defined as

E =
1

2
(C − I).

If E = 0, which implies C = I, then it follows that points in Ω do not experience relative
motion under the mapping ϕ.
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2 Fundamentals

The strain tensor E can be expressed as the derivative of the displacement tensor u, given
by the equation

E =
1

2
(Du+ (Du)⊤ + (Du)⊤Du). (2.1)

For small deformation, it is often assumed that ϕ(X, t) ≈ 0, which implies Du(x, t) ≈ 0.
In this case the formulation (2.1) of the strain tensor can be linearized to

E ≈ 1

2
(Du+ (Du)⊤) =: ϵ. (2.2)

The linearized strain tensor ϵ is a fundamental concept in classical theory of elasticity
and will be addressed in the linear case in Section 2.3 [9].

Let b(x, t) be the body forces that act on Ω. The vector field t(x, t, n) represents the
force per unit area at position x and time t across a surface element with unit normal n.
According to Newton’s second law, the continuum analogue states that for any subbody
U ⊂ Ω

d

dt

∫
Ut

ρv dx =

∫
∂Ut

t(x, t,n) da+
∫
Ut

ρb dx. (2.3)

This assertion is known as the balance of (linear) momentum [10].

Theorem 2.9 (Cauchy’s theorem,[10]). The balance of momentum (2.3) holds, and ϕ(X, t)
is a C1 function, while t(x, t,n) is a continuous function of its arguments. Under these
conditions, there exists a unique ( 2

0 ) tensor field σ, depending on x and t, such that

t(x, t,n) = ⟨σ(x, t),n⟩
In component form, σ(x, t) is a 3× 3 matrix with components σij and t is a vector with
components ti such that ti =

∑
j σijnj. We call σ the Cauchy stress tensor.

Proof. The proof is given in Theorem 2.2 in [10].

2.2.2 Initial Problem

Consider a body Ω. The objective is to determine the time-dependent deformation of
a point within Ω, initially located at X, which moves in a fixed rectangular Cartesian
coordinate system to a point x in the same coordinate system. The goal is to find a
solution to the momentum equation

∇ · σ + ρf = ρü (2.4)

where u is the displacement, ü = ∂2u
∂t2

denotes the acceleration, σ is the Cauchy stress
tensor, f is the body force density, and ρ is the current density. The parameter f
represents the external forces acting on the body Ω. The boundary conditions for this
problem are

u(X, t) =D(t) on ΓD, (2.5)
σ · n = t(t) on ΓN , (2.6)

(σ+ − σ−) · n = 0 on interface ΓI . (2.7)
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2 Fundamentals

Multiplying the momentum equation by a test function ψ and integrating over Ω leads
to ∫

Ω

(∇ · σ + ρf − ρü) ·ψ dΩ = 0. (2.8)

From this, the weak formulation of the momentum equation can be derived, satisfying all
boundary conditions∫

Ω

σ : ∇ψ dV +

∫
Ω

ρü ·ψ dV =

∫
Ω

ρf ·ψ dV +

∫
ΓN

t(t) ·ψ dA (2.9)

where σ : ∇ψ =
∑

i,j σij
∂ψi

∂xj
[12].

2.2.3 Spatial Discretization with Isoparametric Finite Elements

One method for solving the weak formulation (2.9) is to discretize the geometry of body
Ω in its initial configuration using a FE mesh consisting of ne FEs, Ke ⊂ Ωh, such that

Ω ≈ Ωh =
ne⋃
e=1

Ke. (2.10)

An overlapping of the FEs is not allowed, and the assembled elements must be continuous
in Ω. To approximate the primary field variables, which is in the case of equation (2.9),
the displacement u, an interpolation function must be selected. The exact solution for
the weak formulation (2.9) can then be approximated within one FE by

uexact(X) ≈ uh(X) =
n∑
I=1

NI(X)uI . (2.11)

where NI(X) are the shape functions defined in Ke, and uI represents the unknown
nodal quantities. The approximation uh must be chosen such that it converges to the
true solution uexact of the underlying partial differential equation (2.4). One method for
constructing shape or interpolation functions is the isoparamtric scheme, which is a widely
used and popular approach for engineering problems. In this method, both geometry and
variables are interpolated using the same shape function via a reference element K̂. This
implies that the initial X and spatial configuration x are interpolated by the same shape
function NI . Within one finite element, we have

Xe =
n∑
I=1

NI(ξ)XI , xe =
n∑
I=1

NI(ξ)xI (2.12)

Typically, NI is a polynomial function. The shape functions within a FE in its initial
configuration Ke are now replaced in equation (2.12) by shape functions NI(ξ), which are
defined within the reference element K̂. Consequently, a transformation (2.12) for each
element Ke must be performed, which relates Xe = Xe(ξ) to the coordinates ξ of the
reference element K̂ [9].

Figure 2.4 illustrates the transformation process. To perform this process, an approximate
deformation map ϕe of the deformation ϕ from Definition 2.2 is utilized to map an ele-
ment of the initial configuration Ke to its current configuration ϕ(Ke). The deformation
gradient of ϕe, denoted here as F e (see Definition 2.6), is also required for the mapping.
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2 Fundamentals

It follows that

F e = jeJ
−1
e (2.13)

with

je =
∂x

∂ξ
, J e =

∂X

∂ξ
. (2.14)

The equation (2.13) shows that the deformation gradient is defined by the isoparametric
mapping from K̂ to the initial configurationsKe and to the current configuration ϕ(Ke) [9].

ξ

η

K̂

ξ
η

Ke

ξ

η

ϕ(Ke)

J e

ϕe,F e

je

Figure 2.4: Isoparametric mapping of the deformation of a FE Ke (adapted from [9])

2.2.4 Time Integration Methods

After discretizing the weak formulation (2.9) with the FE method, the equation can be
transformed into the general equation of motion with N unknowns

Mü+Cu̇+R(u) = P ∀u ∈ RN , (2.15)

where M denotes the mass matrix, R(u) is the vector of the internal forces (stress di-
vergence), which depends on the deformation u and the stress σ(u). Note that R(u)
contains all non-linearities present in this equation. The time-dependent prescribed loads
are represented by P , while C is the damping matrix. Equation (2.15) can be written
As a first-order differential equation system by defining the independent variables u̇ = v
and ü = v̇ with

u̇ = v (2.16)
v̇ =M−1 (P −Cv −R (u)) . (2.17)

In this context, a denotes the acceleration ü and v is the velocity u̇. The discretized
equation of the linear momentum at time tn+1 is given by

Man+1 +Cvn+1 +R(un+1) = P n+1. (2.18)
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2 Fundamentals

To define an initial value problem, the initial conditions at t = t0 are denoted as

u0 = u,

v0 = v.

In order to determine the time-dependent response of the deformation u(t) of (2.15), two
options are available, which will be discussed in the following [9].

Explicit Time Integration

Explicit methods are straightforward to implement, as the solution at time tn+1 depends
only on the values at time tn. However, they have limitations when it comes to time
step size due to a stabilization criterion. As a result, explicit methods often require small
time steps, which makes them well-suited for engineering applications involving impact
problems where high-frequency parts or shock waves occur [9].

The central difference scheme is a widely used method for solving equations of motion in
solid mechanics and structural problems. This scheme approximates the velocities v and
the accelerations a at a time tn using

vn =
un+1 − un−1

2∆t
, (2.19)

an =
un+1 − 2un + un−1

∆t2
. (2.20)

After inserting these relations into equation (2.15) at time, we obtain

M(un+1 − 2un + un−1) +
∆t

2
C(un+1 − un−1) + ∆t2R(un) = ∆t2P n. (2.21)

This equation (2.21) can be rearranged to solve for the unknown displacement un+1 at
time tn+1

(
M +

∆t

2
C

)
un+1 = ∆t2 (P n −R (un)) +

∆t

2
Cun−1 +M(2un − un−1). (2.22)

Since the mass matrix M and the damping matrix C are constant, a triangular decom-
position can be used for the coefficient matrix M + ∆t

2
C, enabling efficient solution of

equation (2.22).

As mentioned above, explicit methods are not unconditionally stable. The critical time
step limit for non-linear problems is given by

∆t ≤ δ
h

cL
, (2.23)

where h is the size of the smallest element in the FE mesh and cL is the velocity of
a compression wave in a linear solid. It is defined by cL = 3K 1−ν

ρ(1+ν)
with modulus of

compression K, Poisson’s ratio ν and density ρ. The constant δ with 0.2 < δ < 0.9
serves as a reduction factor to be selected according to the non-linear properties of the
problem [9].
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2 Fundamentals

Implicit Time Integration

Implicit methods replace the time derivatives with quantities depending on the last time
step at tn as well as on the still unknown quantities at time tn+α. This leads to a non-linear
algebraic equation system at every time step. In contrast to explicit methods, implicit
schemes can be designed to be unconditionally stable, meaning the time step size has
no limit. This makes them particularly suitable for problems where the response of the
dynamical system depends mainly on lower frequencies, such as simulating engine vibra-
tions [9].

The most popular scheme for solving non-linear implicit dynamic problems is the New-
mark method. As equation (2.18) is a function of an+1, vn+1 and un+1, the idea is to
eliminate an+1 and vn+1 with the following scheme, so that they are only dependent on
the displacements un+1

an+1 = α1(un+1 − un)− α2vn − α3an (2.24)
vn+1 = α4(un+1 − un) + α5vn + α6an (2.25)

with the constants

α1 =
1

β∆t2
, α2 =

1
β∆t

, α3 =
1−2β
2β

,

α4 =
γ
β∆t

, α5 =
(
1− γ

β

)
, α6 =

(
1− γ

2β

)
∆t.

Here, β and γ denote the free parameters of integration. When β = 1
4

and γ = 1
2
, the

method becomes the trapezoidal rule, which is energy conserving. However, if

β >
1

4

(
1

2
+ γ

)2

,

γ >
1

2
,

then numerical damping is introduced into the solution, resulting in a loss of energy and
momentum [9], [12].

After inserting the relations 2.24 and 2.25 in the linear momentum equation 2.18, we
obtain the following non-linear algebraic equation system for the unknown displacements
un+1

G(un+1) =M (α1 (un+1 − un)− α2vn − α3an)

+C (α4 (un+1 − un) + α5vn + α6an) (2.26)
+R(un+1)− P n+1 = 0 [9].

This non-linear system of equations can be solved with various methods, such as the
full Newton schemes or quasi-Newton methods, which include the BFGS method or the
Broyden method [12].
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2.3 Fundamentals Fibre composites

Fibre composites are made from high-strength fibres that absorb applied forces and a
matrix supporting and fixating the fibres in a predefined position. One category of fibre
composites is CFRP, consisting of carbon fibres and a polymer matrix. Carbon fibres have
several desirable properties, including their lightweight nature and high strength. They
perform well not only under static load but also under fatigue loading conditions, mak-
ing them well-suited for structures in aircraft construction. However, carbon fibres also
have certain limitations. Damage caused by impact is often not visible to the naked eye.
This includes fractures and delamination, which is the separation of the plies reducing
the bending stiffness. Therefore, components at risk of impact, which applies to several
structures in aircraft and vehicle construction, are tested with compression after impact
test. Another limitation is the fibre-parallel compressive strength, which is lower than
the tensile strength and sensitive to defects or deviations from the ideal state, such as fi-
bre crimps. Hence, this strength factor is often the limitation for composite structures [13].

The polymer matrix in a CFRP laminate fixates and bonds the fibres, transferring forces
into and between them. It also carries mechanical loads transverse to the fibre direction
and supports fibres during compressive stress. However, the matrix is often the weakest
element in the laminate due to its comparatively low strength [13].

Lightweight structures are often built with thin-walled, flat geometries to minimize weight
while maintaining structural integrity. As the forces act in different directions, the load-
bearing fibres must also be arranged in various directions. To achieve this, plies with
different fibre orientations are stacked on top of each other. This layering is typically done
using UD plies, where the fibres run parallel to a single direction, resulting in direction-
dependent mechanical properties known as anisotropy. By adjusting various parameters,
it is possible to create laminates with desired stiffness and strength properties. The
following variables can be adjusted

• Number of plies

• Proportions of fibre and matrix within a ply

• Fibre direction of the individual plies

• Thickness of the individual plies

• Sequence of the plies [13]

In the following, assume a real three-dimensional vector space R3 with an orthonormal
basis {e1, e2, e3} as in Section 2.2.1 [14]. As previously mentioned, UD plies exhibit
different mechanical properties in different directions. In general, nine different stresses
act on a material volume element (see Figure 2.5), including the three normal stresses
σ1, σ2, σ3, and six shear stresses τ23, τ32, τ13, τ31, τ12, τ21 [13]. In the given vector space,
the form the components of the Cauchy stress tensor σ from Theorem 2.9:

σ =

σ1 τ12 τ13
τ21 σ2 τ23
τ31 τ32 σ3

 [14]. (2.27)
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1

σ3

σ2

σ1

τ13

τ31
τ32

τ23

τ21

τ12

Figure 2.5: Material volume element with stresses (adapted from [13])

Due to anisotropy and its moment equilibrium, the shear stresses are assigned to each
other in pairs, reducing the number of six to three, resulting in a total of six stresses.
According to the law of linear elasticity, also known as Hooke’s law, there is a direct
relationship between stress and strain, which can be expressed as

ϵ1
ϵ2
ϵ3
γ23
γ31
γ12

 =


S11 S12 S13 S14 S15 S16

S21 S22 S23 S24 S25 S26

S31 S32 S33 S34 S35 S36

S41 S42 S43 S44 S45 S46

S51 S52 S53 S54 S55 S56

S61 S62 S63 S64 S65 S66


︸ ︷︷ ︸

Compliance matrix S

·


σ1
σ2
σ3
τ23
τ31
τ12

 (2.28)

For compliance matrix S follows Sij = Sji, reducing the number of unknowns [13]. With
the stresses σ1, σ2, σ3, τ23, τ31, τ21, it is possible to calculate the vector of internal forces
R from equation (2.15) [9]. In the given vector space, the strains ϵ1, ϵ2, ϵ3 and γ23, γ31, γ21
form the components of the linearized strain tensor ϵ from equation (2.2):

ϵ =

 ϵ1
1
2
γ21

1
2
γ31

1
2
γ21 ϵ2

1
2
γ23

1
2
γ31

1
2
γ23 ϵ3

 [14]. (2.29)

A special case of anisotropy is orthotropy, which requires only nine independent constants
to formulate the law of elasticity due to the presents of three orthogonal symmetry planes.
A UD ply is a transversal isotropic material which is a special case of orthotropy. As
shown in Figure 2.6, a UD ply has orthogonal to the fibre direction an infinite amount of
symmetry plane that all have the same properties. Hooke’s law can now be formulated as

ϵ1
ϵ2
ϵ3
γ23
γ31
γ12

 =


S11 S12 S12 0 0 0
S12 S22 S23 0 0 0
S12 S23 S22 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66

 ·

σ1
σ2
σ3
τ23
τ31
τ12

 (2.30)
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3

2

1

Figure 2.6: Volume element of a UD ply with symmetry planes (adapted from [13])

The law of elasticity is often formulated with the constants Young’s modulus E, shear
modulus G, and Poisson’s ratio ν. The Young’s modulus is the ratio of stress and strain
in case of ideal, linear elasticity. In case of shear load, it is referred to as shear modulus.
The Poisson’s ratio is the ratio of transverse and longitudinal expansion. The values in
the compliance matrix from equation (2.30) can be written as

S11 =
1
E1

, S12 =
−ν12
E2

, S22 =
1
E2

, S23 =
ν23
E2

,
S44 =

1
G23

, S55 =
1
G12

, S66 =
1
G12

.

The shear modulus G23 can be expressed in terms of E2 and ν23, resulting in five inde-
pendent parameters to describe the law of elasticity [13].

2.4 LS-DYNA

LS-DYNA is a widely used multi-physics software with its core-competency in non-linear
transient dynamic FE analysis. One of its key strengths lies in its use of keyword inputs,
which form a flexible and logically organized database that are easy to understand. This
enables users to group similar functions under the same keyword. For example, the
keyword *ELEMENT includes solid, beam, shell, spring elements, and many others [15].
A FE simulation model typically consists of

• Material model

• Mesh with element formulation

• Contacts between the parts

• Time integration method

In the following sections, a few features for LS-DYNA relevant to this work will be dis-
cussed.
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2.4.1 Thick Shell Elements

Thick shell elements (*TSHELL) are a type of eight node bending element that lies
between a thin shell and solid elements in terms of its complexity. The shape functions
NI used in these elements are identical to those of a solid eight node element

NI(ξ, η, ζ) =
1

8
(1 + ξξI)(1 + ηηI)(1 + ζζI), (2.31)

where ξ = (ξ, η, ζ) are the coordinates of the reference element K̂ introduced in Sec-
tion 2.2.3. Depending on the element formulation, thick shell elements can be extruded
thin shell elements or layered brick elements. These latter elements can employ fully re-
duced or selectively reduced integration rules, depending on the desired level of accuracy
and computational efficiency. The user can also specify the number of through-thickness
integration points. In addition, a composite option allows users to specify an own mate-
rial, thickness, and material angle for each through-thickness integration point, making it
possible to combine multiple plies in one element. In this work, the element formulation 7
is utilized, representing layered solids with 3D stress updates based on an enhanced strain
model with 2× 2 plane integration [12], [15].

2.4.2 Mortar Contacts

Mortar contacts are designed to work with implicit analysis and are a type of segment-to-
segment contact based on a penalty formulation. This means that there are always small
penetrations between the parts in contact, which are necessary for transferring the contact
force. The contacts are nonsymmetric, with a tracked and a reference surface. Only the
nodes of the tracked surface are checked to see if they penetrate the reference surface.
The segment-to-segment contact works by considering two overlapping and penetrating
segments on each side of the contact interface. A consistent nodal force assembly is
performed for these segments, taking into account their individual shape functions. This
process allows for the transfer of contact forces between the contacting parts [15], [16].
The Mortar contact can be theoretically treated as a generalized FE. In this context,
each element is composed of two contact segments that have their own isoparametric
representation, inherited from the underlying FE formulation [12].

2.4.3 MAT_54

The material model *MAT_ENHANCED_COMPOSITE_DAMAGE or MAT_54 [17]
is a built-in composite material model in LS-DYNA designed to handle orthotropic ma-
terials such as UD composite laminates with distinct properties in the longitudinal and
transverse directions (see Section 2.3). This model can be utilized for simulating thin
shells, thick shells, and solids element. MAT_54 is one of the most widely used material
models for composite simulations due to its simplicity and small number of input param-
eters. This reduces the computational resources required for a simulation and simplifies
material testing to determine the input parameters. However, MAT_54 suffers from
oversimplification of the complex physical mechanisms occurring during failure, leading
to inaccuracies [18].

MAT_54 is a progressive failure model. Some of its parameters can be obtained through
material testing, while others are non-physical and must be determined through trial and
error [18]. Table B.1 in Appendix B provides an overview of all input parameters used
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in this work. In the elastic region, the strain in each ply can be calculated using the
following equations

Fibre (longitudinal, 1-direction): ϵ1 =
1

E1

(σ1 − ν12σ2), (2.32)

Matrix (transverse, 2-direction): ϵ2 =
1

E2

(σ2 − ν21σ1), (2.33)

Shear (12-direction): γ12 =
1

G12

τ12 + ατ 312, (2.34)

where ϵ1, ϵ2, γ12 are the components of the linearized strain tensor (see equation (2.29))
and σ1, σ2, τ12 are the components of the Cauchy stress tensor (see equation (2.27)). The
parameters E1, E2, G12, ν12 and ν21 represent the Young’s modulus, shear modulus, and
major/minor Poisson’s ratios in each direction. The parameter α is a weighting factor for
the non-linear shear stress term called ALPH for MAT_54 [18]. The equations (2.32)
to (2.34) are a special case of the Hooke’s law for transversal orthotropy from equation
(2.30) in the 2D-plane with an additional non-linear stress term.

In the plastic region of MAT_54, the model accounts for four different failure modes
(ef , es, em, ed) under plane stress conditions. For example, the compressive failure mode
ec for the fibres with σ1 < 0 is defined by

e2c =
( σ1
XC

)2
− 1

{
≥ 0 failed
< 0 elastic. (2.35)

Upon reaching failure follows E1 = E2 = ν12 = ν21 = 0. The failure mode ed describes
the compressive matrix failure mode activating when σ22 < 0 and is defined by

e2d =
( σ2
2SC

)2
+

((
Y C

2SC

)2

− 1

)
σ2
Y C

+
( τ12
SC

)2
− 1

{
≥ 0 failed
< 0 elastic. (2.36)

When failure is reached, it follows E2 = ν12 = ν21 = G12 = 0.

Here, XC is the fibre compressive strength, Y C the matrix compressive strength and SC
the shear strength. When any of the conditions above are exceeded within an element
in a ply, the elastic properties for that ply are set to zero [18]. MAT_54 includes non-
physical parameters known as SLIM parameters, mapping the behaviour after reaching
the maximum stress. When the values for XC, Y C or SC are reached within an element,
the stress is reduced based on the factors SLIMC1, SLIMC2, and SLIMS respectively.
The stress is then held constant until the value of EFS is reached, at which point the
element is deleted [18], [19]. Figure 2.7 shows a typical compressive stress-strain curve for
fibres in MAT_54, highlighting the influence of the parameters.

The non-physical parameter EFS is called effective failure strain and is given by

EFS =

√
4

3
(ϵ211 + ϵ11ϵ22 + ϵ222 + ϵ212). (2.37)

The critical EFS value can either be calculated by determining the different strains at
failure or obtained through trial and error. If the strains within an element exceed the
EFS value, it will be deleted. MAT_54 also accounts for the decrease in longitudinal

22



2 Fundamentals

compressive strength (XC) of a ply when transverse matrix failures occur. This phe-
nomenon is caused by a reduction in the efficiency of the matrix in supporting the fibres
against micro-buckling. The reduction factor Y CFAC is used to represent this effect,
with

XC = Y CFAC · Y C. (2.38)

The value of Y CFAC can only be determined by trial and error [18], [19].

Strain

Stress

XC

EFS

SLIMC1

EA

Figure 2.7: Typical stress-strain-curve for MAT_54 (adapted from [19])

2.5 Regression in Machine Learning

ML can be viewed as a subfield of Artificial Intelligence. ML allows a system to learn on
their own, rather than being explicitly programmed for an explicit task. It develops models
that can identify patterns in historical data and use these patterns to make predictions.
There are three major categories in ML: supervised, unsupervised and reinforcement
learning. Unsupervised learning involves training a model on unlabeled data and learns
to extract patterns and features from it without any prior knowledge. In reinforcement
learning, the model is trained on the environment in which it operates by maximizing a
reward signal. In this work, we will focus on supervised learning, which involves training
the model on labeled data. and then using it to make predictions for unlabeled data [20].
Given a dataset D, which is a collection of information about N cases, the dataset contains
a set of p features x = (x1, . . . , xp) ∈ Rp and a target variable y ∈ R

D := {(xi, yi), i = 1, . . . , N}. (2.39)

The main task in supervised learning is to learn from D a mapping H of the features x
onto the target values y

(x1, . . . , xp)
H−−−−→ y [21]. (2.40)

In classification problems, the labels are categorical and represent different classes or
categories. In regression problems, the labels are continuous values that represent the
actual value [20]. In regression, the parameters of the mapping H(x) are adjusted in each
iteration to minimize the total error. To compute the total error, a loss function is used,
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which measures the difference between the actual and predicted values. One of the most
common loss functions is the squared error, defined as

N∑
i=1

(yi −H(Θ,xi))
2. (2.41)

To identify the best parameters Θ of function H, we start with initial values of Θ and
then move in the negative of the gradient descent direction [22].

Before training a ML model, it is essential to split the dataset into training and testing
data. The training data is used to train the ML model, allowing it to learn patterns
from the features. Once the model is trained, it can make predictions on the test data.
Since the labels of the test data are known, it is now possible to assess the quality of the
prediction [20]. Figure 2.8 illustrates the basic architecture of supervised learning process.

Labeled Data

Train Data

Test Data

ML Algorithm

Prediction
Model

Output

Figure 2.8: Basic architecture of a supervised learning process (adapted from [20])

To evaluate the performance of a regression ML process, several different scoring functions
and evaluation metrics can be used. One popular metric is the Mean Absolute Error
(MAE), which corresponds to the expected value of the squared error or loss. For a
predicted value ŷi of the i-th observation with yi being the corresponding true value, the
MAE is defined as

MAE(y, ŷ) =
1

N

N−1∑
i=0

|yi − ŷi| (2.42)

with N being the number of samples. Another widely used metric is the Mean Absolute
Percentage Error (MAPE). The idea behind this metric is to be sensitive to relative errors
and not affected by the scaling of the target variable. For a predicted value ŷi of the i-th
observation and the corresponding true value yi, the MAPE can be calculated with

MAPE(y, ŷ) =
1

N

N−1∑
i=0

|yi − ŷi|
max(ϵ, |yi|)

(2.43)

where N is the number of samples and ϵ is an arbitrary small strictly positive number to
avoid undefined results when y is zero [23].

In the following sections, the steps from preprocessing the data to ML, including the
algorithms RF and SVR for regression problems, are presented.
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2.5.1 Feature Engineering

When training a ML model, it is common that the data used for training is in a raw form
that’s not suitable for training the model. Therefore, it’s essential to clean, organize, and
possibly alter the data. This process is called feature engineering. According to Ozdemir
and Susarla [24], feature engineering “is the process of transforming data into features
that better represent the underlying problem, resulting in improved ML performance”.
Data is typically organized in a tabular format with rows (observations) and columns
(attributes). A feature is an attribute of a dataset that is important for the ML process.
Feature engineering can be applied to data at any stage of the development process,
making it an iterative process. To evaluate the effectiveness of a feature engineering
procedure, the following steps are deployed:

1. Obtain a baseline performance of the ML model

2. Apply feature engineering techniques

3. Measure the performance of the ML model and compare it to the baseline perfor-
mance

4. If the performance of the model improves, the procedure can be applied to the ML
pipeline [24]

Feature Improvement

One aspect of feature engineering is feature improvement, which involves processes such as
structuring unstructured data, inserting missing values, and modifying existing columns
and rows. Missing values are a common occurrence in datasets with different ways to
handle them. For example, the rows with missing values can be deleted or filled in with
an average value or a specific indicator that signals the presence of a missing value.

Another part of feature improvement is standardizing and normalizing the data. In many
cases, the columns of a dataset have vastly different means, minima, maxima and standard
deviations. This can be problematic for some ML models that are affected greatly by the
scale of the data. These models are often distance-based models such as SVR, where a
feature with high values dominate the model. A popular method for data normalization
is the z-score standardization. The values in a feature are re-scaled to have a mean of
zero and a standard deviation of one. For a value x of a cell, the z-score or new value z
is calculated as

z =
x− µ
σ

, (2.44)

where µ is the mean of the column and σ is the standard deviation of the column [24].

Feature Construction

Feature construction is the part of feature engineering that involves creating new fea-
tures, which hold new information and help generate new patterns for ML processes.
Often features are created from existing features. A constructed feature can be added
to the original dataset or replace some existing features, leading to a dimensionality re-
duction. One method for feature construction is to use mathematical operators or a
polynomial. Other approaches focus on transforming features into different data types,
such as transforming a continuos feature into categorical data [24].
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Feature Selection

Feature selection is the process that involves determining which attributes are not useful
for the ML process and should therefore be removed. If given p features, the goal is to
find a subset of k features, where k < p, that improve the performance of the ML model.
Less features in a dataset lead to dimensionality reduction, resulting in reduced training
time for the model. There are various statistical-based methods and model-based feature
selection techniques available. Statistical-based methods include Pearson correlations,
which measure the linear relationship between two features. Model-based methods, such
as RF, use a metric that determines feature importance to choose its split [24].

One popular technique for evaluating feature performance is permutation feature impor-
tance. This method measures the contribution of each feature after the model has been
fitted by randomly shuffling the values of a single feature and observing the resulting
decline model performance. A key advantage of this method is its ability to be applied
to any fitted estimator. The outline for computing the permutation feature importance
is shown in Algorithm 1 [25].

Algorithm 1: Permutation Feature Importance [25]
Input: Fitted model M , dataset D, number of repetitions K
Output: Importance scores ij for each feature xj

1 Compute reference score s← score(M,D) ;
2 foreach xj in D do
3 for k ← 1 to K do
4 Generate D̃k,j by shuffling column j of D randomly ;
5 Compute sk,j ← score(M, D̃k,j) ;

6 Compute ij ← s− 1
K

∑K
k=1 sk,j ;

Outlier Detection

Outlier detection is a method in feature engineering that identifies abnormal or unusual
observations in a dataset, which deviate from the rest. Outlier detection is also known
as unsupervised anomaly detection. The anomalies can have a negative impact on the
performance of ML models and are often removed from the dataset.

One approach for performing outlier detection is using Isolation Forest (IF), which is
based on a RF. The workings of the RF will be discussed in Section 2.5.2. The IF al-
gorithm isolates a sample by randomly selecting a feature and then randomly choosing
a split value that must fall between the maximum and minimum values of the selected
feature. The number of splittings required to isolate an observation is equivalent to the
path length from the root node to the terminating node in the forest. This means that
observations with noticeably shorter paths than the average path length of the forest are
considered anomalies [26].

Another method to outlier detection is the Local Outlier Factor (LOF) algorithm, which
computes a score that measure the local density deviation of an observation with respect
to its neighbours. If a sample has a substantially lower density than its neighbours,
which means it is isolated, then it is considered an outlier. The LOF algorithm works
by obtaining the locality from k-nearest neighbours and using their to estimate the local
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density. The LOF score of an observation is the ratio of the average local density of
its k-nearest neighbours and its own local density. A normal sample has a local density
similar to those of its neighbours, while an outlier has a much smaller local density.
The strength of the LOF algorithm lies in its ability to consider both local and global
properties of datasets. This means that it can still perform well on datasets where outliers
have different underlying densities [26], [27].

2.5.2 Random Forest

RF is an ensemble ML method combining the prediction from multiple decision trees into
a single result. An illustration of this process is shown in Figure 2.9. RF was first intro-
duced by Breimann [28] in 2001 and is a supervised learning method that can be used
for both classification and regression tasks. Individual decision trees tend to overfit and
exhibit high variance, but by combining multiple diverse trees, each built from a different
sample, some of these errors are cancelled out when taking an average of the predici-
tons. This leads to a reduced variance, but sometimes this method can slightly increase
bias. However, the variance reduction is often significant, resulting in a better model [29].
Breimann [28] has shown that the generalization error converges if the number of trees
goes to infinity. The advantages of a RF are include its ability to handle high-dimensional
data and large-scale datasets. Additionally, RF has good generalization performance and
reduces the risk of overfitting. Furthermore, it can handle missing values, outliers and
even complex data with non-linear relationships [30].

Dataset

Decision Tree-1 Decision Tree-2 Decision Tree-B

Result-1 Result-2 Result-B

Averaging

Final Result

. . .

Figure 2.9: Illustration of a RF (adapted from [31])

As previously mentioned, decision trees are the basis of the RF method. Given a set of
training vectors xi ∈ Rp and their associated labels yi ∈ R, a decision tree recursively
partitions the feature space to group samples with similar values together. The data at
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node m is represented by Qm with nm samples. The data is partitioned into the two
subsets Qleft

m (θ) and Qright
m (θ), for each candidate split θ = (j, tm) consisting of a feature

j and a threshold tm

Qleft
m (θ) = {(x, y)|xj ≤ tm}, (2.45)

Qright
m (θ) = Qm \Qleft

m (θ). (2.46)

The quality of a candidate split of node m is assessed using a loss function L

G(Qm, θ) =
nleftm

nm
L(Qleft

m (θ)) +
nrightm

nm
L(Qright

m (θ)). (2.47)

The goal is to select the parameters θ∗ that minimize the impurity

θ∗ = argminθ G(Qm, θ). (2.48)

This step is then recursively applied until the maximum allowable depth is reached. For
regression problems, a common loss function is the means squared error

L(Qm) =
1

nm

∑
y∈Qm

(y − ym)
2 (2.49)

where ym is the learned mean value [32].

RF employs a technique called bagging or bootstrap aggregation to build and evaluate
individual trees. Bootstraping is a resampling method that randomly resamples a dataset
with replacement. The idea behind bagging is to generate B new training sets from the
initial training set through boosting. Once these distinct training sets are obtained, B sep-
arate decision trees are fitted, each estimating its own prediction H1(x), H2(x), . . . , HB(x)
at each point x. These predictions are then summed up to obtain the final prediction

Hbag(x) =
1

B

B∑
b=1

Hb(x). (2.50)

The RF using bagging is outlined in Algorithm 2. The value for the number of randomly
selected features m is central to the RF. When m is small, the degree of decorrelation
increases, leading to a higher chance of generating trees that are very different from each
other. However, this results in rougher representations of the tree and a significant reduc-
tion in variance but at the expense of a larger bias. On the other hand, when the value
for m is large, the trees provide a better representation, but the benefit of aggregating
shrinks significantly, resulting in smaller bias and higher variance [21]. Nevertheless, con-
sidering all features is a good default value to start with. Another important parameter
is the number of trees B. Generally, the more trees a model has, the better the results
will be. However, with more trees, the computational time increases, and the results will
stop getting significantly better beyond a certain number of trees [29].
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Algorithm 2: Random Forest Regression [21]
Input: Dataset D, number of trees B, number of features p, number of randomly

selected features m, minimum node size
Output: Predicted value ŷ

1 for b← 1 to B do
2 Draw a bootstrap sample Db from D;
3 while units in node < minimum number of units do
4 Draw at random m out of p features;
5 Use these m features to grow a tree by binary splitting;

6 Compute prediction Hb(x);

7 Compute ŷ← 1
B

∑B
b=1Hb(x)

2.5.3 Support Vector Regression

Support Vector Machines, first introduced by Cortes and Vapnik [33] in 1995, are a collec-
tion of supervised ML methods that can be used for classification, regression and outlier
detection. When applied to a regression problem, Support Vector Machines are referred
to as SVR. The idea behind SVR is to find a hyperplane that captures the relation-
ship between the input and target variables, minimizing the error between predicted and
actual values. To achieve this, SVR uses a kernel that maps the input features into a
higher-dimensional space, which corresponds to a non-linear decision boundary in the
original feature space [31]. One of the main advantages of SVR is that the computational
complexity is independent from the dimensionality of the input space. Additionally, SVR
is robust to outliers and has low computational cost. It performs well on non-linear prob-
lems as it exhibits great generalization ability with high prediction accuracy [30].

x

y

w⊤x+ b

ζ

+ϵ

−ϵ

Figure 2.10: Illustration of a linearSVR (adapted from [34])

In ϵ-SVR, the goal is to find a function H(x) that has at most ϵ deviation from the
actual targets yi for all data points. Additionally, the function should be as flat as
possible, meaning that errors less than ϵ are neglected, but errors larger than ϵ are not
accepted [34]. Given N training vectors xi ∈ Rp and the associated labels yi ∈ R grouped
in y ∈ RN , we aim to determine w ∈ Rp and b ∈ R for the function H(x) of the form
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H(x) = w⊤ϕ(x) + b. (2.51)

where ϕ implicitly maps the training vectors x into a higher-dimensional space making
SVR non-linear. The concept of flatness in this context means finding a small w that
minimizes its norm. This leads to the convex optimization problem

min
1

2
∥w∥2

subject to yi −w⊤ϕ(xi)− b ≤ ϵ,

w⊤ϕ(xi) + b− yi ≤ ϵ.

(2.52)

However, this optimization problem is not always feasible, which means there exists no
H that approximates all pairs (xi, yi) with ϵ precision. To address this issue, slack vari-
ables ζ, ζ∗ are introduced to allow some margin. The optimization problem can now be
formulated as

min
w,b,ζ,ζ∗

1

2
∥w∥2 + C

N∑
i=1

(ζi + ζ∗i )

subject to yi −w⊤ϕ(xi)− b ≤ ϵ+ ζ,

w⊤ϕ(xi) + b− yi ≤ ϵ+ ζ∗,

ζi, ζ
∗
i ≥ 0

(2.53)

with a constant C > 0 determining the trade-off between the flatness of H and the
amount up to which errors larger than ϵ are tolerated. Therefore, it acts as an inverse
regularization parameter. The model is usually very sensitive towards C. Figure 2.10
illustrates the approach of the SVR. In most cases, the optimization problem (2.53) can
be solved more easily in the dual formulation

min
1

2
(α−α∗)⊤Q(α−α∗) + ϵe⊤(α+α∗)− y⊤(α−α∗)

subject to e⊤(α−α∗),

0 ≤ αi, α
∗
i ≤ C.

(2.54)

The parameters αi and α∗
i are Lagrange multipliers, e is the vector of all ones and Q is a

N ×N positive semidefinite matrix with Qij ≡ K(xi,xj) = ϕ(xi)
⊤ϕ(xj) being the kernel.

After solving the optimization problem (2.54), we receive αi and α∗
i , which are used to

formulate the function H as

H(x) =
i=1∑
N

(αi − α∗
i )K(xi,x) + b (2.55)

For all samples xi inside the ϵ-tube (shaded region in Figure 2.10), the coefficients αi
and α∗

i vanish, meaning that these points do not contribute to the prediction. Only the
samples with non-vanishing coefficients form the function H and are called support vec-
tors [34], [35].

The kernel function can take many different forms. One popular choice is the Radial Basis
Function (RBF) function with

K(xi,xj) = e−γ∥xi−xj∥2 , (2.56)
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where γ > 0 is one of the important parameters that heavily influence the performance
of a SVR with a RBF kernel. The parameter γ determines how far the influence of a
single training example reaches. A low value means ‘far’, while a high value means ‘close’.
It can be seen as the inverse of the radius of influence of samples chosen by the model
as support vectors. If γ is too small, the model becomes too constrained and cannot
represent the complexity of the data. On the other hand, if γ is too large, the model
is prone to overfitting, as the radius of the area of influence of the support vectors only
includes the support vector itself [36].

2.5.4 Hyperparameter Optimization

Hyperparameters are the parameters of a model that cannot be learned within the model
but must be set before training. Examples of hyperparameters for RF include the number
of trees, while for SVR, examples include the constant C or γ for a RBF kernel. The
hyperparameters of a model can be optimized resulting in better performance of a model.
The process of hyperparameter optimization involves

• An estimator such as RF or SVR

• A parameter space

• A method for searching

• A cross-validation scheme

• A score function such as MAE [37]

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Training Data Test Data

All Data

Test Data

Split 1

Split 2

Split 3

Split 4

Split 5

Finding Parameters

Final Evaluation

Figure 2.11: Visualization of the k-fold Cross-validation (CV) (adapted from [38])

When performing a hyperparameter optimization, there is a risk of overfitting to the test
set because the parameters can be altered to optimize performance on the test set, po-
tentially leaking knowledge about the test set into the model. To prevent this, a CV
scheme is necessary for hyperparameter optimization. One approach is k-fold CV, where
the training set is randomly split into k smaller sets called folds. Then for each of the k
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folds, the model is trained using k − 1 folds as training data. Subsequently, the model’s
performance is assessed on the remaining part k of the data serving as a test set [21], [38].
Figure 2.11 illustrates k-fold CV process with 5 folds.

A popular method for hyperparameter optimization is the grid search. In the first step,
a grid of parameters is generated from the values specified in the parameter space. This
grid is then exhaustively searched to find the best combination, meaning all possible com-
binations of hyperparameters are tested [37].

Another approach for finding optimal hyperparameter is Bayesian Optimization, which is
method for optimizing functions that do not presume any functional forms. In contrast
to the grid search, the results of past evaluations are included. They are used for building
a probabilistic model mapping the hyperparameters to the probability of a score in the
objective function. This results in a more efficient optimization process as the selection
of the next hyperparameters considers promising hyperparameters in past results. The
goal of Bayes search is to find the maximum value of an unknown objective function f :

x∗ = argmax
x∈X

f(x), (2.57)

where X is the search space of the hyperparameters x. In Bayesian optimization, the
function f is treated as a random function, and a prior is placed over it to capture
its behaviour. After collecting function evaluations, the prior is updated to construct the
posterior distribution over the objective function f . The posterior distribution is then used
to build an acquisition function to determine the next values for the hyperparameters [39].

2.6 State of the Art for Predicting Mechanical Properties with
Machine Learning

ML has made significant progress in recent years, leading to widespread applications in
predicting the properties of composite components based on experimental and simulation
results. Researchers have successfully applied ML techniques to predict various properties
of composite materials. For example, Wang et al. [40] predicted the mechanical properties
of composite tubes using experimental data from compression tests. Additionally, Alrsai
et al. [31] employed five different ML models to predict the burst pressure of hybrid steel
CFRP pipes based on simulation data. The five ML models included a RF and a SVR
model, with both achieving the best results out of the five models. Similarly, Zhang et
al. [41] used an artificial neural network and a RF to predict the mechanical properties of
composite laminates, including the failure factor of puck. Both models were trained on
simulation data. While the neural network performed slightly better, the RF was faster
to train.
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3 Model Design

This section focuses on setting up the simulation model in LS-DYNA, which will be used
to simulate various samples with different defects. The objective is a robust and reliable
model producing high-quality results with minimal noise. Another consideration is the
computational time of the simulation, as it should be kept at a reasonable level without
compromising accuracy. This is crucial, as the goal is to generate a large amount of data
for the RF and SVR models within the limited time frame of this thesis.

3.1 Hardware Specifications

For this thesis, simulations are executed with LS-DYNA on either the local computer or
a workstation. The specifications of each system are shown in Tables 3.1 and 3.2. The
workstation specifications for CPU, RAM and storage are listed for one node.

Table 3.1: Hardware specifications for the local computer

Hardware Specification

Processor (CPU) Intel Core i7-6700, 4 Cores / 8 Threads, 3.40GHz
Memory (RAM) 8GB, 2133MHz
Main storage (SSD) 237GB
Data storage (HDD) 931 GB

Table 3.2: Hardware specifications for the workstation

Hardware Specification

Total number of nodes 20
Cores per node 32
Processor (CPU) 2 × 16-Core AMD EPYC “Milan” 7313
Memory (RAM) 16 × 64GB DDR4, 3200MHz
Storage 500GB Crucial P5 Plus

3.2 Existing Model

A simulation model existed from a previous project, where the objective was to investi-
gate the effect of defects on the mechanical behaviour of the specimen [6]. Four different
specimen configurations with a size of 22.0 mm × 172.0 mm × 2.0 mm, were examined,
corresponding to Ω = [0, 22]×[0, 172]×[0, 2]. The samples were tested under compression,
with varying element sizes and triangular gap defects at different positions. Each speci-
men had a total of four defects placed at different plies of the sample. Additionally, a fifth
reference sample was used for comparison, which lacked defects and featured an element
size of 1.0 mm. All five samples are depicted in Figure 3.1. The reference sample had a
stacking sequence of [0°/−45°/90°/+45°]2s. The 2s indicates that the stacking is repeated
twice and then mirrored. In contrast, the specimens with defective plies exhibited a fibre
angle deviation of 12°, resulting in a modified stacking sequence [0°/−45°/90°/(51°|39°)]2s.
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1 mm 2 mm 4 mm1 mm

Defect type 1

1 mm

Reference Defect type 2

Figure 3.1: Existing models [6]

The mesh for the samples consisted of three-dimensional thick shell (TSHELL) elements,
with element formulation 7 and three integration points per CFRP ply. Between the
CFRP plies were cohesive layers modelled using three-dimensional eight-node solid ele-
ments, which simulated delamination. The cohesive layers use the same nodes as the
adjacent TSHELL elements of the CFRP plies. Figure 3.2 shows a close-up of the side
view of the mesh, where the plies are displayed in green and the cohesive elements in yel-
low. The mesh was generated directly from a Python script, utilizing data from the path
travelled by the robot during the tape laying process. The advantage of this approach
lies in its ability to work with real-world data, but it is also limited by a long execution
time, and can only map defects that are present in real samples.

Figure 3.2: Close up of the side view of sample’s mesh

The CFRP material is modelled using the physically-based MAT_262 material model,
which is designed to identify the parameters from experimental results [17]. The cohe-
sive layer material is represented by the MAT_240 material model, which is a tri-linear
elastic-ideally plastic model that considers effects of plasticity and rate-dependency. How-
ever, it does not account for brittle fracture behaviour, as the entire separation at failure
is considered plastic [17]. In the event of cohesive element failure, the simulation model
utilized one global contact *CONTACT_ERODING_SINGLE_SURFACE between the
CFRP layers. This contact type is suitable for applications where elements in the contact
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interface fail and are deleted [15]. The plies have a thickness of 0.178 mm, while the
cohesive layers have a thickness of 0.01 mm. When a gap is present between the tapes,
the thickness of the affected ply is reduced to 0.01 mm, rather than 0, due to the fibres
moving into the gap and to avoid mesh discontinuity. Figure 3.3 shows a close-up of the
mesh with a defect.

Figure 3.3: Close up of the mesh for a sample with 1 mm element size

The model was set up in the unit system [mm, kg, ms, kN, GPa] and designed to run
using explicit time integration with a fixed time step of ∆t = 5.6 · 10−5 ms, resulting
to 44643 time steps for a simulation time of T = 2.5 ms. Figure 3.4 shows how the
boundary conditions were applied. The deformation is applied to the upper part of the
sample (green), where nodes undergo a motion in the y-direction that gradually builds
up in velocity until reaching a maximum of 0.2 at time t = 0.5 ms. At the lower part of
the samples (yellow), nodes are fixed with no degrees of freedom. Consequently, ΓD from
equation (2.5) covers ΓD = [0, 22]× [0, 75]× [0, 2] ∪ [0, 22]× [97, 172]× [0, 2], because the
fixation and the motion are both Dirichlet boundary conditions. The area in the middle
of a sample with a size of 22 mm × 22 mm absorbs all the forces. This is equivalent
to the Neumann boundary condition (equation (2.6)) on ΓN = [0, 22] × [75, 97] × [0, 2]
with σ · n = 0. The Interface ΓI (equation (2.7)) covers all the faces between the CFRP
TSHELL and the cohesive solid elements.

172 mm

22 mm

22 mm

cross-section
v

y

x

Figure 3.4: Definition of boundary conditions
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In the middle of the sample, parallel to its width, a cross-section plane defined by
*DATABASE_CROSS_SECTION_PLANE was placed. This plane was used to cal-
culate the resultant forces at this location for each time step tn and write them in the
output files [15]. It is also shown in Figure 3.4. By extracting the force in the y-direction
from this plane, the stress for this cross-section in y-direction at each time step tn can be
calculated using

σn =
Fn
An

, (3.1)

where Fn is the force and An is the area of the cross-section plane at tn. The strain ϵn for
this sample at each time step tn was defined through the displacement un in the y-direction
for one of the nodes on the clamping surface. This leads to the strain in y-direction

ϵn =
un
22.0

, (3.2)

where 22.0 is the free length of the sample. With stress and strain in direction of loading
defined, a stress-strain curve can now be calculated with equations (3.1) and (3.2) for
each time step tn. Figure 3.5 displays the resulting stress-strain curve for the reference
sample without any defects and an element size of 1 mm.
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Figure 3.5: Stress-strain curve for existing model

The stress-strain curve of this model exhibits oscillating behaviour before failure due to
the explicit time integration method. This indicates that this model is not suitable for
generating data for ML algorithms. The noisy data can distort the target variables, such
as Young’s modulus or the area under curve after failure. However, this model has a good
computational time of 7 minutes and 5 seconds, which is executed on the workstation
with one node. Therefore, in the following sections, the model will be modified to address
the issues of oscillating behaviour to produce more accurate results and optimize the
computational time.
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3.3 Implicit Simulation

To mitigate oscillations in the simulation results, the time integration method is switched
from explicit to implicit. However, a few adjustments are necessary to the model to ac-
commodate implicit analysis.

The material model must be changed to MAT_54, as MAT_262 cannot be used with
implicit simulations. This switch benefits from MAT_54 being a simpler model with
fewer input parameters than MAT_262, which should reduce computational time. Some
input parameters for MAT_54 can be inherited from MAT_262. For the other param-
eters, the values from [18] are used for the time being and all the SLIM parameters
are set to 0.5. The optimization of the material parameters for MAT_54 is discussed
in Section 3.4. Additionally, the contact model needs to be modified from the eroding
contact, which is not suitable for implicit simulations, to the Mortar contact *CON-
TACT_AUTOMATIC_SINGLE_SURFACE_MORTAR_ID. This Mortar contact is used
between the TSHELL elements of the CFRP plies to avoid penetrations between them
should the cohesive solid elements fail. This contact model was designed to handle implicit
problems and its parameters are mostly set to default values [15] or adopted from [42].
In Appendix A, the complete contact card is listed.

A non-linear dynamic analysis is carried out because the sample behaves non-linearly after
failure, and the dynamic setting gives the system stability. A separate control card was
added for implicit analysis, with settings mostly based on the default settings provided
by LS-DYNA [15], except for some parameters that are adopted from [42].

3.3.1 Time Step Study

First, the influence of the time step on the simulation results is investigated. LS-DYNA au-
tomatically adjusts the time step if the number of iterations is not within a predetermined
range. This can be controlled through the parameters ITEOPT and ITEWIN [15]. Fig-
ure 3.6 illustrates how the automatic time step control range is calculated. If an implicit
time step is successful, the required number of iterations is compared to the threshold
specified in ITEOPT . If it exceeds the range of ITEWIN , the next time step is either
increased or decreased. For failed implicit steps, the step size is reduced and then repeated
with the new size [15].

Sometimes, it is advisable to set an upper limit for the time step, so that no critical
points like failure are missed. In the following, several implicit simulations with different
maximum allowable time step sizes ∆tmax will be compared. The samples used for this
investigation have no defects and the same dimensions (22.0 mm× 172.0 mm× 2.0 mm),
boundary conditions ΓD, ΓN , ΓI and stacking sequence [0°/−45°/90°/+45°]2s as existing
models from Section 3.2. The element size is set to 2 mm × 2 mm with a thickness of
0.115 mm for CFRP TSHELL elements and 0.01 mm for cohesive solid elements, resulting
in a total of 33408 nodes with 14190 elements for the cohesive plies and 15136 elements
for the CFRP plies. From this only 4228 nodes, 1980 cohesive elements, and 2288 CFRP
elements experience no boundary conditions and absorb all the forces. The simulation
time is T = 1.5 ms. The stress and the strain is calculated in the same way as in equa-
tion (3.1) and (3.2), respectively, with a cross-section in the middle of the sample as in
the existing model from Section 3.2. Figure 3.7 shows the resulting stress-strain curves
from the simulations with different ∆tmax, while Figure 3.8 displays the progression of
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time step size during each simulation. Additionally, Table 3.3 presents the corresponding
computational times obtained by simulating the models with one node on the workstation.

Solution Time

Number of
iterations

ITEOPT

ITEOPT
−ITEWIN

ITEOPT
+ITEWIN

No Auto-
Adjust Zone

Figure 3.6: Iteration window defined by ITEOPT and ITEWIN (adapted from [15])
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Figure 3.7: Stress-Strain curve with different maximum time steps

The stress-strain curves from the different simulations reveal that the oscillations have
disappeared, and the curves are much smoother before and after failure. The various
samples show similar behaviour in the pre-failure region, as well as shortly after failure,
with the exception of the simulation featuring the maximum time step size of 0.1 ms.
This larger time step size resulted in premature failure compared to the other samples
with a smaller time steps because the large time step caused the point of maximal stress
to be skipped. Furthermore, Figure 3.8 shows that the time step needed to be adjusted
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frequently during the simulation, which is a time-consuming process requiring the stiffness
matrix to be reformed at every adjustment of the time step. This frequent adjustment
is also the reason why the simulation with the larger maximum time step size of 0.1 ms
has a longer runtime compared to the simulation with a smaller maximum time step size
of 0.02 ms, which required far fewer time step adjustments. As a result, this maximum
time step size is not suitable for this problem. For the other simulations, the computing
time grows approximately linearly. Notably, at a maximum time step size of 0.005 ms,
the time step no longer needs to be adjusted during simulations.
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Figure 3.8: Time step progression for different maximum time steps

Table 3.3: Computing time for different maximum time steps

∆tmax [ms] Computing time Problem cycles

0.1 1min 22s 536
0.02 1min 12s 433
0.01 2min 49s 1217
0.005 4min 24s 1781
0.002 8min 53s 3260
0.001 17min 0s 6231

For future simulations, the maximum time step size of ∆tmax = 0.005 ms will be employed
since it is the first time step where no adjustments are required during simulations. Ad-
ditionally, this value still has good computational time of 4 minutes and 24 seconds when
simulated with one node on the workstation.
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3.3.2 Automatic Implicit to Explicit Switching

The implicit analysis is now tested on a sample with defects from the existing models, but
unfortunately, the simulation terminates in error after reaching the failure point. This
is because the samples with defects exhibit a stronger non-linear behaviour compared to
a defect-free sample, which are essentially perfect compression rods. The introduction
of defects into the system can lead to instabilities in the implicit analysis, resulting in
convergence problems. To address this issue and keep the implicit method, an automatic
implicit-to-explicit switch is implemented in the simulation. This allows the simulation
to continue running even if the implicit analysis fails to find an equilibrium after several
iterations, by switching to explicit analysis for finishing the simulation. The auto-switch
simulation is set up with the help of chapter 16 in the Ansys Manual [16]. It is recom-
mended to utilize Mortar contacts when implementing this automatic switch, even though
they can be computational expensive for explicit analysis.

Figure 3.9 shows the stress-strain curves from both an implicit and an explicit simu-
lation using the same settings. The stress-strain curves are calculated with the resul-
tant forces in y-direction from the cross-section in the middle of the sample as in Sec-
tion 3.2. The samples have no defects with a stacking sequence [0°/ − 45°/90°/ + 45°]2s,
size 22.0 mm× 172.0 mm× 2.0 mm, and same boundary conditions as the model in Sec-
tion 3.2. The elements have a size of 2 mm× 2 mm× 0.115 mm for CFRP TSHELL and
2 mm × 2 mm × 0.01 mm for cohesive solid. The simulation time is T = 1.5 ms. The
implicit simulation settings are identical to those from Section 3.3.1, with a maximum
time step size of ∆tmax = 0.005 ms. The explicit simulation uses the same model and
settings but with a fixed time step of ∆t = 5.6 · 10−5 ms. The explicit simulation has
a computational time of 1 minute and 6 seconds, which is significantly lower than the
duration of the implicit simulation with 4 minutes and 24 seconds. Both simulation are
run on the workstation with one node.
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Figure 3.9: Stress-strain curve comparison for explicit and implicit
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The behaviour until failure is similar for the implicit and the explicit model with explicit
displaying the typical oscillations due to increased loading speed. However, the stress-
strain curve of explicit analysis drops significantly lower after failure and is nosier than the
implicit one. Unfortunately, this behaviour must be accepted to run the implicit method
until failure while still finishing the simulation with explicit time integration without any
error terminations. Importantly, four out of five target variables are extracted during the
implicit analysis, with the exception being area under curve after failure. The automatic
switch offers a reasonable compromise between maximizing information extraction and
ensuring data quality. The computational time for simulations with an auto-switch will
be in between the explicit and implicit times. The complete control cards for the auto-
switch simulation, which will be used from now, are presented in Appendix A.

3.3.3 Mesh Reduction

To minimize computational time, the mesh is reduced to only the middle section of the
sample, which is not fixed and absorbs all the loads. So far, the mesh was a repre-
sentation of the sample with a size of 22.0 mm × 172.0 mm, that is used for experi-
mental tests. However, areas which are subjected to clamping conditions do not add
any value. Consequently, the clamping regions are neglected, and the boundary condi-
tions are applied solely to the edges of the reduced mesh resulting in a mesh a size of
22.0 mm× 22.0 mm, corresponding to Ω = [0, 22]× [0, 22]× [0, 2] for 16 plies. This leads
to ΓD = [0, 22]× {0} × [0, 2] ∪ [0, 22]× {22} × [0, 2] and ΓN = [0, 22]× (0, 22)× [0, 2].

The smaller mesh yields identical results but with a significantly lower number of nodes
and elements, resulting in a substantial reduction in computational time by a factor of four.
This is because for the larger mesh the stiffness matrix also has to be set up and solved
for the nodes in the boundary conditions, even if they do not contribute any meaningful
results. Figure 3.10 displays a comparison between the old and the new smaller mesh,
with the green area highlighting the region where nodes experience the applied boundary
conditions.

Figure 3.10: Mesh reduction

3.4 Tuning of the Parameters of MAT_54

In this section, the parameters of the new material model MAT_54 are adjusted to
match the simulation results as closely as possible to experimental data obtained from
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a compression test. However, care is taken to ensure that the parameters do not as-
sume any unphysical values. Figure 3.11 shows a comparison of the stress-strain curves
between the experimental and simulations results from the model in Section 3.3.1 with
∆tmax = 0.005 ms. The experiment and simulation is conducted on a sample with 16
plies and a stacking sequence [0°/ − 45°/90°/ + 45°]2s. With the current parameters for
MAT_54, the simulated samples have too low a strength compared to real-world samples.
Additionally, the Young’s modulus is not set correctly, which can lead to significantly de-
viating results even if the strength parameters are adjusted.
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Figure 3.11: Stress-strain curve comparison for implicit analysis and test data

Initially, an optimization process for some of the material parameters is performed using
LS-OPT, a graphical optimization tool with an interface to LS-DYNA that can solve
many optimization problems. With LS-OPT, it is possible to solve the non-linear inverse
problem of identifying material parameters to model simulation results against experi-
mental data [43]. However, unlike individual simulations with LS-DYNA, LS-OPT has to
run on the local computer increasing the computational time significantly. To mitigate
this, the size of the elements is increased from 2.0 mm×2.0 mm to 3.6 mm×3.6 mm. The
thickness of the elements stays the same with 0.115 mm for the CFRP TSHELL and 0.01
mm for the cohesive solid elements. Additionally, only the inner part of the sample with
22.0 mm × 22.0 mm is modelled with boundary conditions applied to the edges. For an
element size of 3.6 mm and 16 plies, the mesh has 1568 nodes with 448 nodes experiencing
a boundary condition. In the first optimization, only the parameters for the longitudinal
Young’s modulus EA and compressive strength XC are modified, as they have the high-
est influence in the first part of the simulation (Figure 2.7 in Section 2.4.3). In a second
optimization, the values for EA and XC are fixed and the parameters that influence
mostly the behaviour after failure are adjusted, including EFS, SLIMC1, SLIMC2 and
SLIMS. In addition, SC and Y C are also optimized. The optimizations yielded promis-
ing results, closely matching experimental data.
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However, since the simulations for the data of the ML models will not be carried out in
this element size, several simulations were conducted with different element sizes and the
optimized material model to evaluate whether the material model is suitable for different
element sizes. The resulting stress-strain curves calculated using equations (3.1) and (3.2)
from the cross-section in the middle of the sample are displayed in Figure 3.12, with curve
labels indicating the element size. All other settings are kept consistent across these simu-
lations, with a mesh size of 22.0 mm×22.0 mm×2.0 mm, T = 2.25 ms, ∆tmax = 0.005 ms
for the implicit simulation part, and ∆t = 5.6 · 10−5 ms for the explicit simulation part.
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Figure 3.12: Results for different element sizes with optimized material model

A significant dependency is observed between the simulation results and the element size.
The mesh with an element size of 3.6 mm, which has been optimized, is close to the
experimental data. In contrast, simulations with smaller element sizes fail earlier and at
lower stresses. Additionally, until an element size of 2.75 mm, the simulations run purely
implicitly without switching to explicit. Given this dependence on element size, it is clear
that the optimization for the material model must be carried out using the element size
that will be later used for generating the data for the ML models. Therefore, the decision
is made to continue with an element size of 1.1 mm × 1.1 mm × 0.115 mm for TSHELL
and 1.1 mm × 1.1 mm × 0.01 mm for solid elements, resulting in 14112 nodes, 6400
TSHELL elements for CFRP and 6000 cohesive elements for 16 plies. This element size
is deemed sufficient to achieve good accuracy. The other settings, such as the mesh size
of 22.0 mm× 22.0 mm× 2.0 mm, stacking sequence [0°/− 45°/90°/+45°]2s, T = 2.25 ms,
∆tmax = 0.005 ms for implicit and ∆t = 5.6 · 10−5 ms for explicit, are left unchanged.

Due to the increased computational time associated with a finer mesh, the optimization
with LS-OPT is no longer a viable option. As a result, the adjustment of the material
parameters is performed manually through trial and error to run the simulations on the
workstation with more computing power. The values for the parameters Y C and SC are
taken from existing literature [44] to speed up the process. Additionally, the value for EA
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can be adopted from the previous optimization since there is no element size dependency
in the first gradient of the stress-strain curve. This leaves EFS, SLIMC1, SLIMC2
and SLIMS open for manual adjustment. The value for EFS is set comparatively high
to avoid element deletion. If an element is deleted due to failure, the adjacent elements
in the same row are also deleted, leading to system instability. The SLIM parameters
are non-physical and therefore have no upper or lower bounds for their adjustment. After
conducting some trial and error, a suitable set of parameters is identified that matches
the simulation results close the experimental data. All the parameters for MAT_54 and
their used values are listed in Appendix B.

0.000 0.005 0.010 0.015 0.020 0.025

Strain [-]

0.0

0.1

0.2

0.3

0.4

S
tr

es
s

[k
N
/m

m
2
]

test data

simulation

Figure 3.13: Stress-strain curve for optimized material card

Figure 3.13 shows a comparison between the stress-strain curves of the finalized simulation
and the experimental data. The stress-strain curve of simulation model fails slightly later
and drops off more steeply after failure. Additionally, the part after failure exhibits
oscillations characteristic of explicit analysis and it dips under the experimental curve
and eventually falls off towards the end. Due to time constraints, further optimization
of the material model is not feasible. However, the simulation represents a significant
improvement over the previous model.

3.5 Mesh Convergence

In this section, the quality of the simulation model with respect to the mesh discretiza-
tion error is assessed by conducting several simulations with varying element sizes, rang-
ing from smaller to larger than the selected element size of 1.1 mm × 1.1 mm. The
stress-strain curves obtained from these simulations are displayed in Figure 3.14. The
settings are identical to those used in the simulation from Figure 3.13, with a mesh size of
22.0 mm× 22.0 mm× 2.0 mm, TSHELL thickness 0.115 mm, cohesive element thickness
0.01 mm, stacking sequence [0°/− 45°/90°/ + 45°]2s, T = 2.25 ms, ∆tmax = 0.005 ms for
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implicit, and ∆t = 5.6 · 10−5 ms for explicit. The computational times for each simula-
tion are listed in Table 3.4. All simulations are executed on the workstation with one node.
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Figure 3.14: Stress-strain curves for different element sizes

Table 3.4: Computing time for different element sizes

Mesh size [mm] Computing time

3.6 1 min 10 s
2.2 1 min 52 s
1.467 3 min 29 s
1.1 5 min 33 s
0.88 5 min 47 s
0.733 8 min 7 s
0.629 8 min 12 s

The stress-strain curves obtained from the simulations indicate that the simulation model
has not yet reached full convergence, as the point of failure decreases with a smaller el-
ement size. Furthermore, the shape of the curve after failure is highly dependent on the
element size. The strain value for the maximum stress remains relatively constant across
an element size of 1.1 mm and smaller. Similarly, the behaviour of the model at the
beginning is identical regardless of element size. These findings suggest that the element
size and material model MAT_54 are interdependent, making it impossible to optimize
one independently of the other.

One explanation for the non-convergence is that stress peaks in elements at the edges
which become more pronounced as the element size decreases. Figure 3.15 shows the
resultant stress values in y-direction for each element in ply 16 at t = 1.0 ms for different
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(a) Element size 3.6 mm (b) Element size 1.1 mm

(c) Element size 0.63 mm

Figure 3.15: Y-stress for different meshes at t = 1.0 ms

element sizes. In the right corner of each mesh, the size of one element from the other
element sizes is displayed. The stress plots reveal that finer meshes have higher stress
concentrations at the corners. For example, the mesh with an element size of 1.1 mm
has lower stress values (1.21 kN/mm2) at its corner compared to the mesh with an ele-
ment size of 0.63 mm (1.24 kN/mm2). However, this also means that these elements fail
first, triggering a chain reaction that can cause the entire row to fail. In contrast, larger
elements lead to an averaging of stresses over larger regions and present lower stresses.
Consequently, samples with finer meshes tend to fail earlier due to the earlier failure of
individual elements.

Due to time constraints for this work, the current element size of 1.1 mm is retained, as
optimizing a new material model for a smaller mesh size would be too time-consuming.
Additionally, generating data for the ML model would take significantly longer for simu-
lations with a finer mesh, resulting in a substantial decrease in the amount test data that
can be generated.

46



4 Generating the Data

4 Generating the Data

In this section, the process for generating data for the ML models based on simulation
results is described. First, multiple samples are created using a Python script and then
simulated with LS-DYNA. From the simulation results, the target variables are extracted,
and together with the sample configurations, are used to train the RF and SVR models
to predict mechanical properties of tape-layered specimens. The workflow for creating
and evaluating the data, which will be described in the following sections, is shown in
Figure 4.1.

The samples are set up with the reduced mesh and its boundaries ΓD,ΓN from Sec-
tion 3.3.3. One side of the mesh is fixed, while the other side experiences a motion, result-
ing in the Dirichlet boundary condition. The CFRP is modelled with three-dimensional
TSHELL elements with a size of 1.1 mm×1.1 mm×0.115 mm as the plies have a thickness
of 0.115 mm. The cohesive layers are 0.01 mm thick, resulting in an element size for the
three-dimensional solids of 1.1 mm× 1.1 mm× 0.01 mm. The optimized material model
MAT_54 from Section 3.4 is employed for the CFRP plies and the cohesive layers are
modelled with MAT_240 as in the existing model from Section 3.2. A Mortar contact is
used between the TSHELL elements of the CFRP plies to prevent penetrations in case
the cohesive layers fail. The simulation will utilize an auto-switch from implicit to explicit
time integration with ∆tmax = 0.005 ms for implicit and ∆t = 5.6 · 10−5 ms for explicit.
The simulation time is set to T = 2.5 ms.

The goal for generating samples is to introduce randomness and diversity in their con-
figurations, effectively covering a wide range of defects. The samples will have either 8,
12, or 16 plies, resulting in a total sample thickness of 1.0 mm, 1.5 mm, or 2.0 mm. The
stacking sequence will be random but symmetric and balanced, meaning that for every
0 degree ply, there exists a 90 degree ply in the stacking sequence. The same applies to
+45 and −45 plies. Additionally, each sample can have either one or two defect, but only
one per ply. Defects can be triangular or rectangular in shape. The rectangular defect
can represent either a macroscopic pore (1.1 mm× 1.1 mm) or extend through the entire
sample, representing a defect between tapes. Furthermore, a defect can be either a gap
or an overlap between tapes. For gaps, the CFRP ply thickness is reduced to 0.015 mm,
while for a overlaps, it increases to 0.24 mm.

4.1 Generating the Samples for the Simulations

The first step towards generating the data for ML models involves creating many different
samples with various defects and their associated input files for simulations, from which
the data will be extracted. Since all simulation settings are identical except for the mesh,
only a single simulation file for the mesh needs to be generated for each mesh configuration.
These files for LS-DYNA are created using the Python script output_files_generator.py,
which aggregates many individual scripts. The entire process for generating simulation
files for 1000 samples took approximately 44 minutes and 42 seconds.

The script simple_model.py begins by creating nodes and elements for a random stack
with a random number of plies without any defects selected from predefined configurations.
Subsequently, it randomly determines the properties of defects and their location within
samples. Two additional scripts, add_defect_triangle.py and add_defect_rectangle, ap-
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Figure 4.1: Workflow for the generation of the data
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ply the random defect to the sample by modifying the z-coordinates of the affected nodes.
For gap defects, the z-coordinate is decreased, while for an overlap defect, it is increased
by the thickness of a ply. Additionally, the fibre orientation must be adjusted for trian-
gular defects. In this work, potential changes in local fibre volume content near defects
are not considered.

Every sample is identified by an ID, which can be used to access the model creation set-
tings. Subsequently, element and node information for the completed mesh are written
into a simulation file named 00_main.key. This file is then saved in a separate folder
named after the ID of each sample. Furthermore, a file called Input.csv is created dur-
ing the mesh generation process, containing all relevant information about every single
sample. This file will later be used as input for ML models. Table 4.1 shows an excerpt
from this file. The first column contains the ID, followed by columns 1 to 8 listing the
stacking sequence. Since the stacking sequence is symmetrical, it is sufficient to list only
half of it. The column ply_defect1 specifies the ply number where the first defect occurs,
while type_of_defect1 indicates whether it is a gap (0) or an overlap (1). The subsequent
columns, specify the size and location of the defect within a ply. The columns x_1 and
y_1 define a point p positioning the defect in the 2D plane. If the defect is triangular, the
opening angle is listed in angle1, while if it is rectangular in shape, the columns width1
and length1 give the dimensions. By specifying one point and the dimensions, the defect
is clearly determined.

The columns c1.1 to c1.7 indicate the corner points of the defect. With this information,
the mesh can be manually rebuilt if files are lost. For triangular defects, the six corner
points occupy positions c1 to c3 and c5 to c7. The four corner points for a rectangular
defect are listed in columns from c1 to c4. Figure 4.2 illustrates the characterization of a
defect based on its corner points. The point p corresponds to positions c2 and c7 for the
triangular defect. The subsequent columns list the properties for a second defect. Empty
cells are left blank.

c1

p

c3 c6

c5

p

c1

c2 c3

c4

Figure 4.2: Characterization of the defects
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Table 4.1: The first six IDs of the file Input.csv
ID 1 2 3 4 5 6 7 8 ply_defect1 type_of_defect1 x_1
1 -45 0 45 90 6 1 -0.6
2 90 0 90 0 45 -45 11 0 18.4
3 90 0 90 0 2 1 11.1
4 -45 90 45 0 2 1 11
5 45 -45 -45 90 45 0 4 0 93
6 0 45 -45 90 90 0 45 -45 16 0 10.3

y_1 angle1 width1 length1 c1.1x c1.1y c1.2x c1.2y c1.3x c1.3y c1.4x
-0.3 1.7 32.81 -1.20 0.30 0.00 -0.90 23.20 22.30 22.00
17.6 1.1 1.1 17.85 17.60 18.95 17.60 18.95 18.70 17.85
16.8 1.1 1.1 10.55 16.80 11.65 16.80 11.65 17.90 10.55
3.2 1.1 1.1 11.00 3.75 11.00 2.65 12.10 2.65 12.10
7.2 5 92.39 21.19 93.00 7.20 -67.48 14.21
0 1.1 32.21 9.75 0.00 10.85 0.00 10.85 32.21 9.75

c1.4y c1.5x c1.5y c1.6x c1.6y c1.7x c1.7y ply_defect2 type_of_defect2
23.50
18.70 1 0
17.90 7 0
3.75

252.87 14.18 253.48 0.19 93.00 7.20
32.21 9 1

x_2 y_2 angle2 width2 length2 c2.1x c2.1y c2.2x c2.2y c2.3x

214.00 7.80 2.2 213.73 21.80 214.0 7.80 -150.6
7.10 -32.40 9.9 -6.85 -33.61 7.10 -32.40 0.07

143.00 -103.80 4.1 153.25 -94.26 143.00 -103.8 286.3

c2.3y c2.4x c2.4y c2.5x c2.5y c2.6x c2.6y c2.7x c2.7y

14.80 578.4 14.80 578.6 0.80 214.0 7.80
-113.5 0.18 47.52 14.13 48.73 7.10 -32.40

-237.2 9.92 39.16 -0.32 29.62 143.0 -103.8
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4.2 Running the Simulations and Postprocessing

The next step involves running simulations for each sample and extracting necessary data
from the results. The script run_simulation.py sends the simulation files 00_main.key
one after another to the workstation, which runs LS-DYNA. During the simulation, LS-
DYNA generates multiple files, but most of them are automatically deleted by the Python
script due to the workstation’s maximum file limit. However, certain critical files remain,
including *d3hsp and *binout. The *d3hsp file contains information about the simulation
process, such as computational time, time step details, or whether the simulation com-
pleted successfully. From the 1000 simulations conducted, 17 terminated with an error
and 25 ran fully implicit without a switch to explicit. The reason for the error termina-
tion or the full implicit run could not be derived from the properties of the samples. The
average computational time per simulation was 3 minutes and 22 seconds. The simula-
tion with the lowest runtime of 1 minutes and 47 seconds experienced an early switch to
explicit, whereas the one with longest time of 19 minutes 10 seconds was a full implicit run.

The *binout file contains all the simulation results for the nodes and elements, which al-
lows the script postprocessing.py to extract relevant data. This includes the course of the
force of the cross-section in y-direction, the displacement in y-direction of one boundary
node, and the area of the cross-section. With these outputs, stress and strain for each time
step can be calculated using equations (3.1) and (3.2) in Section 3.2. After performing
these calculations, all target parameters for the ML models can now be extracted from
the simulation data.
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Figure 4.3: Relationship between the target variables and a typical stress-strain curve
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The relationship between the five target variables and the stress-strain curve is shown
in Figure 4.3. The variables max stress and strain at max stress are chosen as targets
because they represent the strength of a sample and how much strain it can take before
it failing. The target Young’s modulus is an important value, as it measures the stiffness
and is needed to describe the law of elasticity (see Section 2.3). It can be calculated by
determining the slope during the elastic part of the stress-strain curve until failure. The
variables area before failure and area after failure are used as targets to extract some
information about the course of the stress-strain curve. For example, a low value of area
after failure indicates that the plateau in the stress-strain curve after failure is very low
or non-existent. The variable area after failure is only calculated until the stress drops
below 0.05, as some samples have strong oscillations or negative stresses after failure.
Both area before failure and area after failure are calculated with the integral function
from the Python scipy library [45]. Additionally, the stress-strain curve for each sample
is plotted, which will be later used in Section 4.3.1 to assess the quality of the simulation
results. The values of the target parameters are saved in the file Output.csv, as shown in
Table 4.2.

Table 4.2: The first six IDs of the file Output.csv

ID max stress strain at
max stress Young’s modulus area before

failure
area after

failure
1 0.3724 0.009607 39.06 0.0018032 0.0002437
2 0.3986 0.009607 42.54 0.0019536 0.0010232
3 0.2877 0.009352 48.82 0.0015434 0.0003704
4 0.2102 0.005516 39.26 0.0005964 0.0013951
5 0.2884 0.008789 34.05 0.0013060 0.0010146
6 0.4243 0.011384 38.64 0.0024980 0.0026363

4.3 Analysing the Data

The next step involves checking the simulation results from the samples for outliers,
unusual behaviour, unsuitable results, or numerical difficulties that could potentially neg-
atively impact the accuracy of the ML models.

4.3.1 Stress-Strain Curves

The first step in assessing the simulation results involved manually checking all stress-
strain curves for unusual behaviour. It is observed that simulations for almost all samples
with 8 plies and a thickness of 1 mm exhibit numerical difficulties, manifesting as high
oscillations or erratic behaviour in the stress-strain curves compared to samples with 12
or 16 plies. Examples are shown in the Appendix C. This behaviour is explained by the
thinness of the samples with 8 plies which can lead to failure through buckling under com-
pression, a mode of failure distinct from the samples with 12 or 16 plies, which experience
failure through fibre rupture. The behaviour of the 8 plies is physically explainable but
LS-DYNA has difficulties in solving this problem which is shown through the oscillations
distorting the target variables such as max stress and area after failure. To ensure uni-
formity in failure modes across the dataset, all 8-ply samples are removed, leaving 662
samples.
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Additionally, it was noticed that 23 stress-strain curves exhibit very low maximum stresses
with high plateaus after failure for both 12 and 16 plies samples. Upon reviewing the
settings for these samples, it is observed that all of them have a stacking featuring only
45 degree plies. In these samples, the fibres take almost no load during compression, with
forces primarily absorbed by the matrix. As a result, these samples have low strength and
fail due to matrix failure at the point of failure. Given that this behaviour is physically
plausible, the samples with only 45-degree plies in their stacking are left in the dataset.

4.3.2 Extreme Values

In the following, the samples with the highest and lowest value for each target variable
are checked to detect unusual behaviour. For the extreme values of max stress, strain at
max stress, Young’s modulus and area before failure, a clear pattern in the settings for
the samples is recognisable. The highest values for these variables are found in samples
with only 0 and 90 degree plies. In contrast, the lowest of the above values is taken by
samples with only 45 degrees in the plies. An exception are the extreme values for area
after failure. The highest values has a sample with a balanced stacking of 12 plies and
a gap in a 45 degrees ply. The lowest value is taken by a sample with 16 plies, a fairly
balanced stacking and an overlap in a 45 degrees ply. The reason for the extreme values
can not be derived from the settings of the samples. Since all the samples with extreme
values do not exhibit unusual behaviour, they can remain in the data set.

4.3.3 Outlier Detection

In this section, an outlier detection is performed to identify potential outliers and their
causes. The outlier detection is executed in Python using IF [46] and LOF [27] (see Out-
lier Detection in Section 2.5.1) from the scikit-learn library with the default settings.

Out of 662 samples, IF identifies 92 as outliers, which contain extreme values due to sam-
ples with only 45 or 0/90 degree plies in their stacking sequence. These stacking sequences
are relatively rare due to the random generation process and symmetry requirement. Ad-
ditionally, IF also declares almost all samples that underwent a pure implicit run without
a switch to explicit as outliers. However, it is unclear which configuration of a sample
leads to a pure implicit run.

In contrast, the LOF method delivers different results compared to IF. It does not classify
either the stacking sequences with only 45 or 0/90 degree plies, nor the purely implicit
simulations, as outliers. This is because the LOF method defines an outlier by how iso-
lated it is (see Section 2.5.1). Since there exist about 20 samples with a pure 45 or 0/90
degree stacking, these observations are not isolated and therefore are not considered out-
liers. Instead, LOF seems to have detected outliers that have unique combinations of
features and cannot be recognized as part of a pattern. Furthermore, LOF detected 114
outliers, which represents about 17% of the 662 samples.

One reason for LOF and IF declaring around 14 to 17 percent as outlier might be the
randomness in the data. This can result in many unique combinations, especially with a
smaller amount of data points. A larger dataset would likely result in fewer outliers being
declared. A total of 19 samples are identified as outliers by both IF and LOF. A closer
look at their stress-strain curves shows that most of these samples exhibit some numerical
problems during the simulations, such as oscillations in the stress-strain curves. Despite
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the apparent anomalies, no clear correlation between specific configurations and these
issues could be determined. Moreover, only a small fraction of the samples are affected
by this problem meaning that all the samples are left in the dataset. This results in 662
individual samples being available for model design.
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5 Development of the Machine Learning Models

In this section, RF and SVR models are developed and assessed according to their perfor-
mance. This involves finding a suitable format for the dataset through feature engineering.
The models will use a training test split of 80:20 and their performance is evaluated with
the metrics MAE (equation (2.42)) and MAPE (equation (2.43)) for all five target vari-
ables max stress, strain at max stress, Young’s modulus, area before failure, area after
failure and the overall model. The performance of the model is always assessed on the
unknown test dataset. The models are build in Python with the scikit-learn modules for
RF [47] and SVR [48].

5.1 Data Preparation

Before training the RF and SVR models, it is essential to prepare and alter the data.
Currently, the Input.csv file contains numerous missing values and unnecessary attributes,
making it unsuitable for ML. The first step in addressing this issue is feature selection,
which involves identifying and removing unnecessary columns. The file Input.csv contains
all the information of the samples, which are partially dependent on each other and there-
fore redundant. As mentioned in Section 4.1, the columns of the corner points are only
listed in the dataset to manually rebuild the simulation files if they are lost. Consequently,
these columns only contain information that can be extracted from other attributes. As a
result, all the columns of the corner points are removed, leading to a great dimensionality
reduction from 51 attributes to 23. Additionally, the column containing the sample ID
is also removed, leaving 22 relevant attributes. The data in Output.csv is already in a
suitable format after removing the ID column.

However, the Input.csv file still contains many missing values because some samples do
not have two defects or 16 plies. To address this issue, feature improvement is necessary
to fill in these missing values. For columns describing the defects, such as ply_defect, x,
y, angle, width and length, the missing values are set to 0. This also makes sense from a
geometric perspective, as for example, if there is no defect, the width or length would be
0. The 0 in the type_of_defect column has a specific meaning, with 0 indicating a gap
and 1 indicating an overlap. Therefore, the missing values in these columns are filled with
-1. The same applies to the columns that specify the fibre direction of the plies. Here, the
value 0 represents a fibre direction and for this reason the missing values are filled in with
-999 to clearly indicate missing plies. The current status of the table is shown in Table 5.1.

With this preprocessing step complete, the dataset is now ready for training and evaluating
the RF model. However, since the SVR is a distance-based model, it requires scaling the
data to avoid the domination of large-scaled attributes. Before scaling, the columns with
fibre directions for plies have to be converted because the -999 values for missing plies
would distort the scaling. Therefore, the fibre directions are converted to labels as only
four fibre directions are used in this work. The conversion is as follows

−999→ 0, −45→ 1, 0→ 2, 45→ 3, 90→ 4.

These labels also consider the angle difference between the fibre directions, which is a 45
degree jump from label to label. With these labels, all the columns can now be scaled
using the z-score standardization from equation (2.44) from Section 2.5.1. When scaling,
it is essential to only scale the training dataset and then apply the same scaler to the test
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Table 5.1: The first six rows of the altered Input.csv file
1 2 3 4 5 6 7 8 ply_defect1 type_of_defect1 x_1
-45 0 45 90 -999 -999 -999 -999 6 1 -0.6
90 0 90 0 45 -45 -999 -999 11 0 18.4
90 0 90 0 -999 -999 -999 -999 2 1 11.1
-45 90 45 0 -999 -999 -999 -999 2 1 11
45 -45 -45 90 45 0 -999 -999 4 0 93
0 45 -45 90 90 0 45 -45 16 0 10.3

y_1 angle1 width1 length1 ply_defect2 type_of_defect2 x_2 y_2
-0.3 0 1.7 32.81 0 0 0 0
17.6 0 1.1 1.1 1 0 214.00 7.80
16.8 0 1.1 1.1 7 0 7.10 -32.40
3.2 0 1.1 1.1 0 0 0 0
7.2 5 0 0 0 0 0 0
0 0 1.1 32.21 9 1 143.00 -103.80

angle2 width2 length2
0 0 0
2.2 0 0
9.9 0 0
0 0 0
0 0 0
4.1 0 0
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dataset to avoid data leakage from the training to the test data. With these preprocessing
steps completed, the input is now ready for training the SVR model.

5.2 Performance on Different Data Sets

In this section, RF and SVR are applied to different datasets that have been altered by
various feature engineering techniques. The goal is to find a format for the ML models
achieving the best performance. Both RF and SVR are trained with the default settings
from scikit-learn. For RF, this means that 100 trees are fitted, with all the features
considered for each tree. For the default SVR with a RBF kernel in scikit-learn, the
parameters are set to C = 1.0 and ϵ = 0.1. The value for γ is scaled according to the
input data resulting in γ = 0.05.

5.2.1 Baseline Performance

In the first step, RF and SVR are trained on the dataset from Section 5.1. These models
serve as a baseline performance for comparison with other models that have a modified
dataset. The dataset consists of 662 observations, with 22 attributes in total, out of
which 530 observations are used for training. The metrics obtained by these models are
presented in Table 5.2. RF trains in about 2.42 seconds, while SVR requires only 0.095
seconds.

Table 5.2: Metrics of the baseline performance

Target RF SVR

MAE MAPE [%] MAE MAPE [%]

max stress 0.0458 12.26 0.0432 11.69
strain at max stress 0.000 548 5.28 0.000 578 5.69
Young’s modulus 3.30 9.44 2.87 8.20
area before failure 0.000 317 16.19 0.000 316 16.42
area after failure 0.000 507 67.33 0.000 563 73.21
overall model 0.669 22.10 0.583 23.04

The metrics reveal that RF and SVR have similar performance. The models performed
well in predicting strain at max stress and Young’s modulus, with a MAPE below 10%.
However, for max stress and area before failure, the MAPE is around 12% and 16%,
respectively, indicating room for improvement. The target variable area after failure
exhibits poor performance from both models. It is also the only variable that is extracted
during the explicit part of the simulation.
It seems that the ML models have difficulties identifying clear correlations between the
sample characteristics and its behaviour after failure. A potential explanation could be
that the explicit time integration introduces noise into simulation, distorting the values
for area after failure. Another possibility is that the highly non-linear behaviour of the
model after failure may be difficult for the ML models to predict accurately.

Overall, RF performs better than SVR on three out of five target variables, and it has
a better MAPE on the overall model. However, SVR has a better MAE overall, which
is due to its better performance on Young’s modulus. This variable has high absolute
values compared to the other targets. Therefore, the overall performance is measured
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with MAPE as it is independent of scaling.

Figure 5.1 illustrates the first two upper levels of a decision tree used in the RF model
to predict max stress. Each node in the decision tree displays the current feature and its
threshold, followed by the value of the squared error loss function (equation (2.49)), which
is used to assess the quality of the split. Additionally, it shows the number of samples in
each subset and the mean value of max stress for each subset. The tree structure reveals
that this decision tree first sorts the samples based on their stacking. The samples sorted
to the far left have lower max stress values compared to those in other nodes. This is
because all these sample have a fibre direction of -45 degrees in ply 1, 3 and 5. The
symmetry of the stacking sequence implies that there must to be an equal amount of +45
and -45 degree plies, which likely leads to a pure 45 degree stacking with very low max
stress compared to other stacking sequences.

Figure 5.1: First two upper levels of a decision tree for max stress

5.2.2 Doubling of the Dataset

In the current input format, if a sample has one defect, its information is stored in the
columns corresponding to 1. If it has a second defect, its settings are stored in the
columns corresponding to 2. As a result, the columns with 1 are always filled, while
the columns with 2 are only filled if a sample has two defects. The sequence of storing
defects for samples with two defects is random and lacks any meaning. The idea now
is to swap the items of columns 1 and 2, as shown in Figure 5.2 on the basis of two
examples. In the first example, the sample has only one rectangular defect in ply 6. The
second sample has a rectangular defect in ply 11 and a triangular defect in ply 1. Before
swapping the columns, the first defect would be stored in the columns corresponding to
1. However, after swapping the columns, its characteristics are now written down in the
columns corresponding to 2. This swapping process has no effect on the properties of
the samples. However, it makes a difference for the ML models because they perceive
these samples as new observations. To take advantage of this new information, the old
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dataset and the new one with the column swap are combined, resulting in twice as large
dataset than before. This leads to 1324 observations from which 1059 are used for training
the RF and SVR models. Table 5.3 shows the performance for both models on the new
dataset. RF needs now 3.82 to train the model, while SVR only needs about 0.28 seconds.

ply_defect1 . . . width1 length1 ply_defect2 . . . angle2 width2 length2
6 . . . 1.7 32.81 0 . . . 0 0 0
11 . . . 1.1 1.1 1 . . . 2.0 0 0

ply_defect1 . . . angle1 width1 length1 ply_defect2 . . . width2 length2
0 . . . 0 0 0 6 . . . 1.7 32.81
1 . . . 2.0 0 0 11 . . . 1.1 1.1

Before:

After switching the columns:

Figure 5.2: Process of swapping the columns for the two defects

The table reveals that the performance for both RF and SVR has increased significantly
across all target variables. The MAPE for max stress is now below 10%, while strain at
max stress and Young’s modulus are even under 5% for the RF model. The target variable
area before failure experiences a decrease in MAPE, with 4% improvement for RF and
only 1% for SVR. Notably, RF appears to have benefited more from the larger dataset
than SVR. The performance for area after failure improved significantly, but it still
lags behind the other targets in terms of accuracy. However, this improvement indicates
that the models can now determine a clearer relationship between the samples and their
behaviour after failure with more training data. Given the significant improvements in
performance with the larger dataset, it will be retained for future studies.

Table 5.3: Metrics for doubling of the dataset

Target RF SVR

MAE MAPE [%] MAE MAPE [%]

max stress 0.0297 7.68 0.0356 9.70
strain at max stress 0.000 496 4.86 0.000 545 5.45
Young’s modulus 1.75 4.95 2.25 6.10
area before failure 0.000 238 12.70 0.000 275 15.13
area after failure 0.000 419 50.88 0.000 482 57.62
overall model 0.356 16.21 0.458 18.80

5.2.3 Separate Models for Samples with 12 and 16 Plies

In the following section, two separate models are trained for samples with 12 and 16 plies
using both RF and SVR. The assumption behind this approach is that by separating
samples based on the number of plies, they will become more similar to each other, which
could lead to better predictions. In the input table for the samples with 12 plies, the
columns for ply 7 and 8 are removed, as they are not necessary for samples with 12 plies
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and would contain only the dummy value -999. All four models are trained using the
larger dataset. This results in 718 observations for the 16 ply samples out of which 574
are used for training. The 12 ply samples have 607 observations, resulting in 486 training
samples. The performance metrics for both RF and SVR on these separate datasets are
presented in Tables 5.4 and 5.5.

Table 5.4: Metrics for samples with 16 plies

Target RF SVR

MAE MAPE [%] MAE MAPE [%]

max stress 0.0257 6.66 0.0193 5.09
strain at max stress 0.000 331 3.08 0.000 290 2.73
Young’s modulus 2.08 5.95 1.47 4.25
area before failure 0.000 174 8.42 0.000 153 7.44
area after failure 0.000 403 44.24 0.000 424 50.90
overall model 0.421 13.71 0.298 14.08

Table 5.5: Metrics for samples with 12 plies

Target RF SVR

MAE MAPE [%] MAE MAPE [%]

max stress 0.0363 12.00 0.0396 12.40
strain at max stress 0.000 766 7.89 0.000 927 9.59
Young’s modulus 1.73 5.69 1.92 5.66
area before failure 0.000 295 19.97 0.000 368 25.01
area after failure 0.000 421 58.11 0.000 497 66.01
overall model 0.353 20.73 0.393 23.74

The metrics show that the models trained on the dataset with only 16 ply samples have
improved their performance compared to the models from Section 5.2.2. For all target
variables except area after failure, the MAPE has dropped below 10%. The MAPE for
strain at max stress is even lower, at around 3%. SVR now shows better performance
than RF on all target variables except for area after failure. However, the overall MAPE
of SVR is slightly worse than that of RF due to its higher MAPE value for area after
failure. Despite this, the overall MAE of SVR is significantly better than that of RF.
This is because the absolute values of area after failure have a low scaling and therefore
do not have a great impact on the overall MAE.

In contrast, the models trained on samples with 12 plies have poor performance. Partic-
ularly, the target area before failure worsened in terms of accuracy. One reason for the
bad performance on the 12 ply samples might be that fewer observations are available to
train the model than with the 16 ply samples. Another reason might be that the sam-
ples with 12 plies experience some kind of buckling similar to those with 8 plies, making
their properties less predictable. Furthermore, the influence of the defects increases for
the 12 plies sample because the material is thinner and more prone to instability. For
these samples, the defects represent a large proportion of the total material volume. In
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the following, the separate models for 12 and 16 plies are not used because the 12 plies
models have worse performance.

5.2.4 Combining the Attributes angle and length

Currently, depending on the defect, either the column angle or the columns width and
length are empty or filled with a 0. The idea is to combine the attributes angle and length
into a single column, angle_or_length, for both defect 1 and 2. The column width still
indicates the shape of the defect because it contains non-zero values only for rectangular
defects. By combining the columns angle and length, a dimensionality reduction from 22
to 20 attributes is achieved, which might lead to better performance for the ML models.
Table 5.6 lists the performance for RF and SVR on the new dataset.

Table 5.6: Metrics for angle and length combined

Target RF SVR

MAE MAPE [%] MAE MAPE [%]

max stress 0.0288 7.38 0.0339 9.17
strain at max stress 0.000 479 4.70 0.000 536 5.36
Young’s modulus 1.73 4.89 2.04 5.52
area before failure 0.000 238 12.55 0.000 265 14.42
area after failure 0.000 420 51.08 0.000 473 55.87
overall model 0.352 16.12 0.415 18.07

The performances show a slight improvement compared to the current best model from
Section 5.2.2. Both RF and SVR have improved slightly across all variables and the
overall model, indicating that the dimensionality reduction has led to better performance.
Overall, RF has better predictions on the target variables than SVR.

5.2.5 Adding the Attribute area

As in the previous section, another attempt is made to transform the attributes to find
a dataset format with a better performance than before. Instead of quantifying the size
of the defect using columns angle, length and width, a new column area is introduced.
This columns defines the area of a defect which it occupies in its ply. The idea behind
this column is to provide the ML models with a better understanding of the size of the
defect, as larger defects may have a higher influence on sample behaviour. By replacing
these attributes with area, some information about the shape of the defect (rectangular or
triangular) is lost. To prevent this loss of information, a new column called tria_or_rect
is introduced to label the shape of the defect. A rectangular defect has the label 1, a
triangular the label 2, and if there is no defect this is indicated by a 0. The introduction
of these two columns and the removal of three attributes per defect leads to 20 attributes
in the dataset. Table 5.7 displays the metrics for RF and SVR on this altered dataset.

Compared to the current best dataset from Section 5.2.4, both RF and SVR perform
slightly worse on target variable strain at max stress, with a 0.04% and 0.07% increase
in MAPE. Additionally, the MAPE for area after failure increased slightly. However,
the overall model and all the other target variables experience improved predictions.
Therefore, this dataset format is found to be the best so far and will be used for future
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investigations of RF and SVR.

Table 5.7: Metrics for adding attribute area

Target RF SVR

MAE MAPE [%] MAE MAPE [%]

max stress 0.0281 7.24 0.0330 8.84
strain at max stress 0.000 484 4.74 0.000 529 5.29
Young’s modulus 1.71 4.83 2.09 5.59
area before failure 0.000 226 11.94 0.000 256 14.02
area after failure 0.000 422 51.14 0.000 475 56.23
overall model 0.347 15.98 0.424 17.99

Compared to the baseline performance from Section 5.2.1, the altered dataset leads to
a decrease in MAPE for the overall model from around 22% to 16% for RF and 23% to
18% for SVR. The largest improvement is seen in the target variable area after failure
with a MAPE decrease from 16% for RF and 17% for SVR. Except for the already well-
performing strain at max stress, the other variables improved their MAPE for RF of 5%
and 3% for SVR.

5.3 Feature Importance for Random Forest

In this section, Feature Importance (FI) is performed to assess the influence and im-
portance of the attributes on the five target variables. This analysis helps in better
understanding the ML models and determines what parameters of a defect have the most
impact on the behaviour of a sample. The FI is examined using Permutation Feature Im-
portance for the RF model, which is trained on the dataset from Section 5.2.5 using the
default settings from scikit-learn library. Figure 5.3 displays the Permutation Importance
values for all five target variables.

The Permutation Importance results show that, for the target variables max stress and
Young’s modulus, only the fibre direction of the plies has an influence. The defects are
largely irrelevant for these two variables. The fibre direction of ply 5 is found to be the
most important feature for both targets. The least important plies for max stress and
Young’s modulus are ply 7 and 8, which the samples with 12 plies do not have. This
finding might suggest that it does not make a big difference if the columns of ply 7 and
8 are filled with fibre directions for the 16 ply samples or dummy values for the 12 ply
samples. This could indicate that the samples with 12 and 16 ply have similar values for
max stress and Young’s modulus.

For the targets area before failure and area after failure, the plies also have the most influ-
ence. After that come the attributes area and the coordinates of a point x and y defining
the position of the defect in a ply. However, their permutation importance is still rela-
tively low. The only target variable where the defects seem to have an impact is strain at
max stress. The first few important features are some plies, but the area of the defects and
whether it is a triangular or rectangular have significant influence on the model. Notably,
the fibre direction of ply 8 is found to be the most important feature for this variable, sug-
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gesting that the samples with 12 and 16 plies have different values for strain at max stress.

Overall, for all targets, the least important features seems to be type_of_defect, which
defines if the defect is a gap or an overlap. Another surprising finding is that in what ply
the defect has low importance overall. When a defect is located in one of the bottom plies,
the plies above it also exhibit the defect because they fill it in or cause it to through the
layers. However, this does not appear to have significant impact on the target variables.
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Figure 5.3: FI for different target variables (1)
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Figure 5.3: FI for different target variables (2)
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5.4 Hyperparameter Optimization

In this section a hyperparameter optimization for both RF and SVR is performed. The
goal is to improve the performance on the dataset of Section 5.2.5. The grid search is
executed with the module from scikit-learn [49] and the Bayes search is adopted from
scikit-optimize [50]. Both have the k-fold CV integrated and MAE is used for scoring.

5.4.1 Random Forest

As discussed in Section 2.5.2, the number of trees and the number of features considered
for each tree are important hyperparameters. Therefore, they are now analysed separately
to determine their influence on the model performance.

In the previous Section 5.2, the RF was trained with 100 trees. In the following, several
different numbers of trees are tested to evaluate their performance. Figure 5.4 displays the
relationship between the number of trees and MAPE, while Figure 5.5 shows the training
time for each model. The development of MAPE across various number of trees reveals
that the performance does not improve beyond 10 to 15 trees, at which point it converges
The training time increases linearly with the number of trees. However, this is not a
concern when selecting the optimal number of trees for this application, as even 140 trees
can be trained in under two seconds. Every target variable has its own optimal number
of trees. The best overall performance achieves the model with 120 trees, as shown in
Table 5.8. Compared to the current best model from Section 5.2.5, all target variables
increase their performance slightly except for Young’s modulus for which the MAPE only
increases by 0.02% and the MAE by 0.01%. Therefore, RF with 120 trees is established
as the current best model.
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Figure 5.4: MAPE per target variable depending on number of trees
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Figure 5.5: Training time for number of trees

Table 5.8: Metrics for RF with 120 desicion trees

Target MAE MAPE [%]

max stress 0.0280 7.19
strain at max stress 0.000 483 4.73
Young’s modulus 1.72 4.85
area before failure 0.000 224 11.87
area after failure 0.000 422 50.84
overall model 0.349 15.90

In the default setting of scikit-learn, all features are considered when building the trees.
Figure 5.6 displays the course of the MAPE for different number of features across all
targets. The decimal number represents the fraction of the overall number of features
used at a given value (e. g., 1.0 means using all features). The plot shows that the MAPE
decreases with an increasing number of features, with the minimum being at 1.0 for all
target variables. However, the improvements in MAPE are not as significant as those
seen with the number of trees, as the MAPE decrease is more flat. Figure 5.7 displays
the influence of the number of features on the training time of RF. Like the plot for the
number of trees, it shows an increase in training time with a growing number of features,
but the relationship is not monotonic. Given that using all features was already found to
be the optimal value, it remains as such.

66



5 Development of the Machine Learning Models

0.2 0.4 0.6 0.8 1.0
Number of Features

10

20

30

40

50

M
A

P
E

[%
] max stress

strain at max stress

Young’s modulus

area before failure

area after failure

Figure 5.6: MAPE per target variable depending on max_features

0.2 0.4 0.6 0.8 1.0
Number of Features

1.2

1.3

1.4

1.5

1.6

T
ra

in
in

g
T

im
e

[s
]

Figure 5.7: Computing time per max_features

67



5 Development of the Machine Learning Models

With a number of trees of 120 and using all features as the optimal value, three other
parameters of RF are optimized using grid search and Bayes Search to determine optimal
settings. The parameters optimized are the maximum depth of a decision tree called
max_depth in scikit-learn, the minimum number of samples required to split a node
denoted as min_samples_split and the minimum number of samples required to be at
a leaf node called min_samples_leaf in scikit-learn [47]. The parameter spaces for grid
search is

max_depth : [None, 10, 20, 30, 40, 50],
min_samples_split : [2, 5, 7, 10, 12, 15, 20],
min_samples_leaf : [1, 2, 4, 8]

with the bold numbers indicating the default settings which were used until now. The
parameter space for the Bayes search is

max_depth : Integer(5, 100),
min_samples_split : Integer(2, 20),
min_samples_leaf : Integer(1, 8).

The upper limit max_depth is set to 100 to account for the setting None in grid search.
Both grid search and Bayes search resulted in the default settings of these three parameters
providing the best model performance.

5.4.2 Support Vector Regression

In this section, a hyperparameter optimization for SVR is performed. SVR is generally
more sensitive to its hyperparameters than RF. The parameters ϵ, γ and C are optimized
using a grid search and a Bayes search. First, a grid search is performed with the default
settings and a 5 fold CV and the MAE metric as scoring function. This results in 336
combinations with 1680 fits over the 5 folds. Scikit-learn recommends that for C and γ,
the values should be spaced exponentially far apart [35]. The parameter space for ϵ, γ
and C is

ϵ : [0.001, 0.01, 0.05,0.1, 0.15, 0.2]

γ : [1e−4, 1e−3, 1e−2, 1e−1, 1, 10, scale, auto]
C : [1e−3, 1e−2, 1e−1,1, 10, 100, 1000]

with the bold values being the default settings. It takes 468 seconds to perform the grid
search. The best found parameters are

ϵ = 0.01, γ = 0.01, C = 10.

The metrics for this new model are presented in Table 5.9. Compared to the previous
model from Section 5.2.5, the MAPE for the overall model and all the target variables
decreased by approximately 1%. The target variable that benefited most from the opti-
mization is Young’s modulus, with an improvement in MAPE from 5.59% to 3.87% and
MAE from 2.09 to 1.44. The new values for ϵ, γ and C clearly improved the model
performance.
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Table 5.9: Metrics for SVR after grid search

Target MAE MAPE [%]

max stress 0.0275 7.56
strain at max stress 0.000 532 5.30
Young’s modulus 1.44 3.87
area before failure 0.000 239 13.10
area after failure 0.000 474 54.85
overall model 0.294 16.94

In the following, a Bayes search is conducted to compare the results with the grid search
and to evaluate the computational times of both optimization methods. The Bayes search
from scikit-optimize is used with a 3 fold CV and a parameter space of

ϵ : Real(0.001, 1.0)
γ : Real(1e−4, 10)
C : Real(1e−3, 1e3)

with ‘Real’ indicating that the search is performed over a real-valued interval. The op-
timization process takes approximately 55 seconds which is significantly faster than the
grid search. The results of the Bayes search are

ϵ = 0.001, γ = 0.010, C = 24.88.

Notably, both the grid search and Bayes search set γ to 0.01, but the Bayes search deter-
mines a higher value for C and a lower value for ϵ than the grid search. Figures 5.8, 5.9
and 5.10 display the combinations assessed by the Bayes search and their MAE for ϵ, γ
and C. Figure 5.8 shows that the values for C and γ appear to have a minimum point
in the parameter space, which is identified by the Bayes search as the region with the
lowest MAE value. However, Figures 5.9 and 5.10 indicate that ϵ does not have a clear
minimum. The values for ϵ all have relatively high MAE values across the range of ϵ,
indicating a lack of a densely regions with low MAE values. The optimized value for ϵ
is the lower limit of the given range. As a result, the lower limit of the parameter space
of ϵ is set to 1e−10. A second Bayes search is performed with this new range for ϵ, but
the Bayes search still chooses this very low limit for ϵ with the values for γ and C staying
the same. Furthermore, the model performance does not change. As a result, the value
ϵ = 0.001 is kept for the Bayes search.
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Table 5.10 presents the metrics for SVR using the optimized parameters from the Bayes
search. The overall model performance is equivalent to the grid search model according
to the MAPE but better in terms of the MAE. Furthermore, the target variables max
stress, Young’s modulus and area before failure show improved prediction performance
compared to the grid search model. Only for strain at max stress and area after failure
does the Bayes search model make worse predictions than the grid search model. Despite
this, the Bayes search model has a better overall MAE and performs better on three out
of five target variables, making it the best SVR model according to these metrics.

Table 5.10: Metrics for SVR after Bayes search

Target MAE MAPE [%]

max stress 0.0258 6.89
strain at max stress 0.000 553 5.47
Young’s modulus 1.18 3.11
area before failure 0.000 244 12.85
area after failure 0.000 489 56.40
overall model 0.242 16.94

5.5 Comparison of the final Random Forest and Support Vector
Regression models

In this section, the final models of RF and SVR are compared to the baseline performance
from Section 5.2.1. The final RF model has 120 trees and requires approximately 4.8
seconds to train on the dataset from Section 5.2.5. The settings for the final SVR are
ϵ = 0.001, γ = 0.010 and C = 24.88, and it takes about 1.5 seconds to train. Table 5.11
displays the baseline performance, while Table 5.12 presents the performance of the final
models.

Table 5.11: Metrics of the baseline performance

Target RF SVR

MAE MAPE [%] MAE MAPE [%]

max stress 0.0458 12.26 0.0432 11.69
strain at max stress 0.000 548 5.28 0.000 578 5.69
Young’s modulus 3.30 9.44 2.87 8.20
area before failure 0.000 317 16.19 0.000 316 16.42
area after failure 0.000 507 67.33 0.000 563 73.21
overall model 0.669 22.10 0.583 23.04

The target variable that showed the least improvement is strain at max stress, but it
already had good performance in the baseline models. However, the target variables max
stress, Young’s modulus and area before failure all saw significant improvements in their
MAPE values, with a decrease of about 5%. The weakest target variable, area after fail-
ure, improved its MAPE by 17%. Overall, both RF and SVR seen an improvement in
performance of around 7%, thanks to the alterations made to the dataset and the opti-
mization of their hyperparameters.
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Table 5.12: Metrics for the final models

Target RF SVR

MAE MAPE [%] MAE MAPE [%]

max stress 0.0280 7.19 0.0258 6.89
strain at max stress 0.000 483 4.73 0.000 553 5.47
Young’s modulus 1.72 4.85 1.18 3.11
area before failure 0.000 224 11.87 0.000 244 12.85
area after failure 0.000 422 50.84 0.000 489 56.40
overall model 0.349 15.90 0.242 16.94

In the final model, RF has a better overall MAPE, but SVR performs better in terms of
MAE. This is because RF excels at predicting area after failure, while SVR performs well
on Young’s modulus. As mentioned earlier, these variables have high MAPE and MAE
values, respectively. When examining the metrics for both models across all target vari-
ables, it becomes clear that they are generally comparable in performance. However, RF
performs better on strain at max stress, area before failure and area after failure. Except
for strain at max stress, these variables have poor performance, which makes it challeng-
ing to determine which model is more suitable for predicting mechanical properties. are
these the variables with a comparatively bad performance. RF appears to have a slight
advantage over SVR, but both models have their strengths and weaknesses.
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In this section, the final trained ML models from Sections 5.4.1 and 5.4.2 are evaluated
on various datasets to assess their performance in producing realistic results for different
defect configurations.

6.1 Performance on Unknown Datasets

The final trained models for RF and SVR are evaluated on two completely unknown
datasets, meaning the training set does not contain any similar samples. First, the models
are tested on 10 samples with only 8 plies. These samples are chosen from the initial
dataset of 1000 samples. Care is taken to choose samples which failed with fibre rupture
and did not have numerical problems with large oscillations during simulation. Table 6.1
shows the performance of these models on these 10 samples with 8 plies. All the target
variables have poor performance with most targets having a MAPE value of over 20%.
This shows that the samples with 8 plies exhibit significantly different behaviour compared
to thicker samples, validating the decision of removing them from the training dataset in
Section 4.3.1.

Table 6.1: Metrics for samples with 8 plies

Target RF SVR

MAE MAPE [%] MAE MAPE [%]

max stress 0.0571 18.00 0.141 39.25
strain at max stress 0.001 91 24.70 0.001 76 22.57
Young’s modulus 7.80 18.68 22.9 56.82
area before failure 0.000 606 51.88 0.000 647 41.62
area after failure 0.001 10 379.50 0.000 408 140.70
whole model 1.57 98.56 4.62 60.19

Table 6.2 presents the prediction performance on 10 randomly chosen samples with 12
and 16 plies, symmetric stacking and no defects. For RF, all target variables showed a
decline in performance, except for strain at max stress and Young’s modulus, which still
performed well, with MAPE values under 6%. However, the performance of the target area
after failure is significantly worse, with a MAPE of around 132%, making this prediction
unreliable. The other two targets showed fine performance, but their MAPE increased
by around 5% compared to previous results. In contrast, SVR performed similarly on
samples without defects, except for area after failure, which showed a worsening MAPE
of under 1%. This finding shows that SVR can predict the mechanical properties of sample
iwthout defects with good accuracy.

74



6 Application of the Machine Learning Models

Table 6.2: Metrics for samples without defects

Target RF SVR

MAE MAPE [%] MAE MAPE [%]

max stress 0.060 657 11.94 0.033 527 6.73
strain at max stress 0.000 746 5.91 0.000 727 5.78
Young’s modulus 2.113 720 5.72 1.261 055 3.33
area before failure 0.000 525 16.00 0.000 422 13.05
area after failure 0.000 960 132.69 0.000 773 67.76
whole model 0.435 300 34.45 0.259 300 19.33

6.2 Effects of Defects on the Samples

The ML models are now used to identify the influence of different defects on a sample’s
behaviour. The target variables are predicted using both the final RF and SVR models.
For the samples without any defects, the SVR model is used as it has shown excellent
performance on these datasets in the previous Section 6.1. For samples with a defect, the
targets max stress and Young’s modulus are estimated with the SVR and strain at max
stress, area before failure, and area after failure are predicted with RF because the models
showed the best performances on these targets respectively.

6.2.1 Defects in Different Plies

First, it is examined whether the ply in which the defect occurs has a significant influence.
If a defect is in one of bottom plies, more plies are stacked above it and are also affected, as
they must fill in the gap or stack on the overlap. To investigate this effect, different samples
with a stacking sequence of [90°/0°/90°/0°]2s are created, each containing a rectangular
gap in the upper half of one of the 90 degree plies, with a with of 1.9 mm. The defect is
placed in ply 1,7, or 16, and an additional sample without a defect is included as reference.
Table 6.3 shows the predicted values for the target variables.

Table 6.3: Mechanical properties for a defect travelling through the plies

Defected Ply max stress strain at
max stress

Young’s
modulus

area before
failure

area after
failure

No Defect 0.6099 0.011 62 49.88 0.003 513 0.002 040
1 0.5849 0.011 42 50.06 0.003 303 0.001 089
7 0.5959 0.011 59 50.29 0.003 309 0.001 098
16 0.6062 0.011 65 50.30 0.003 394 0.001 252

It can be observed that the further down the defect is located, the weaker the sample
becomes. However, the differences in strength values are relatively small. The maximum
stress decreases by only 3.5% when comparing a defect in ply 16 to one in ply 1. The
target strain at max stress also decreases when the defect is at the bottom of the sample,
but again, the differences are minimal. Furthermore, there is no noticeable difference
between a defect-free sample and one with a defect in ply 16. These results are consistent
with the FI analysis from Section 5.3, where the defected ply was identified as a less
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significant feature. While the defected ply does have some influence, its effect is minor
compared to other, more important features.

6.2.2 Size of the Defects

In the following, the influence of a rectangular gap on the behaviour of a sample is
examined. For this, different samples with defect sizes between 1.1 mm and 1.9 mm
are tested, which corresponds to the defect range used for training the ML models The
stacking sequence is [0°/− 45°/90°/ + 45°]2s, with the defect located in ply 7, which is a
90 degrees ply. Table 6.4 presents the mechanical properties of the samples with varying
gap sizes.

Table 6.4: Mechanical properties for different gap sizes

Size of Gap max stress strain at
max stress

Young’s
modulus

area before
failure

area after
failure

No Defect 0.4548 0.012 06 39.83 0.002 881 0.001 656
1.1 mm 0.4354 0.011 69 38.71 0.002 621 0.002 000
1.5 mm 0.4355 0.011 63 38.72 0.002 613 0.001 998
1.9 mm 0.4355 0.011 62 38.74 0.002 620 0.002 005

The results show no significant differences between the gap sizes. This is due to mesh size
of 1.1mm× 1.1mm. Consequently, rectangular defects with sizes of 1.1 mm and 1.9 mm
are discretised into the same element width, leading to identical results. This indicates
that the model is not suitable for comparing different rectangular defect sizes. Therefore,
a finer mesh an an adjusted defect size range should be considered in future work. Overall,
the samples containing a gap show a lower maximum strength and strain at maximum
strength compared to the sample without a defect.

6.2.3 Differences between Gap and Overlap Defects

According to the FI analysis, the attribute indicating whether the defect is a gap or
an overlap is overall the least important feature for all target variables. This, however,
contrasts with findings from previous studies, where overlaps were shown to have little
influence on strength and stiffness, while gaps did have a significant impact (see Sec-
tion 2.1) [4], [5], [8]. To investigate this further, samples with a stacking sequence of
[0°/ − 45°/90°/ + 45°]2s and a defect in ply 7, which is a 90 degrees ply, are analysed.
Table 6.5 compares the results for a sample with a gap, an overlap, and no defect.

Table 6.5: Mechanical properties for different gap sizes

max stress strain at
max stress

Young’s
modulus

area before
failure

area after
failure

No Defect 0.4548 0.012 06 39.83 0.002 881 0.001 656
Gap 0.4355 0.011 62 38.74 0.002 620 0.002 005
Overlap 0.4330 0.011 62 38.54 0.002 622 0.002 024

The results show that max stress and Young’s modulus vary only minimally between gap
and overlap defects, while the values for strain at max stress are even identical. In line
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with the FI analysis, this suggests that, according to the ML models, there is no significant
difference in behaviour between samples with rectangular gaps or overlaps.

77



7 Conclusion

7 Conclusion

In this work, the goal was to develop a RF and a SVR model to predict the mechanical
properties of tape-layered specimen with defects which are manufactured with the AFP
process. The ML models were trained on results from simulation data with LS-DYNA
representing a compression test. The used simulation model employed an implicit time
integration method that switched to explicit when the implicit method failed to reach
convergence after sample failure. In contrast to the explicit method, the implicit part
of the simulations showed no oscillations, providing good quality results. However, an
auto-switch formulation was used as a good compromise between quality of the results
and robustness of the model. With an optimization of the parameters of the material
model MAT_54, the simulation results were matched close to experimental results. The
computational time was reduced by simulating only the part of the sample not affected
by clamping.

Using this model, 1000 samples with different properties and defect configurations were
generated, out of which only 17 terminated in error, demonstrating the robustness of the
model. The samples with 8 plies experienced failure through buckling, leading to numeri-
cal problems during the simulation with high oscillations. Additionally, this failure mode
is very different from the fibre ruptured observed in 12- and 16-ply samples. As a result,
all specimens with 8 plies were removed from the dataset to ensure mostly uniform failure
modes across the dataset.

After training RF and SVR on the dataset using the default settings from scikit-learn to
obtain a baseline performance, the performances of the models were improved through fea-
ture engineering techniques involving the generation of a new attribute and the doubling
of the dataset. Further optimization was performed on RF and SVR with hyperparameter
tuning, which improved their performances. The final models for RF and SVR achieved
excellent prediction performance for max stress, strain at max stress and Young’s modulus,
with MAPE under 7% and some values reaching under 5%. The target area before failure
had a good performance with a MAPE of around 12%. However, the target variable area
after failure had very poor prediction results with a MAPE between 50% and 56%, which
may be attributed to its extraction from the explicit part of the simulation. Overall, SVR
excelled on max stress and Young’s modulus while RF had a better performance on the
other three targets. In conclusion, the mechanical properties for a compression test were
successfully predicted using both RF and SVR.

The application of the models revealed that SVR can predict the mechanical properties
of samples without defects with the same precision without being trained on them. The
properties for samples with defects at different plies were predicted with realistic results
showing that defects at the bottom layers decrease the strength of a sample compared
to defects in the upper layers. However, a comparison between gap and overlap defects
showed no difference in the mechanical properties.
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8 Outlook

The aim of this thesis was to establish the foundation capable of predicting all the me-
chanical properties of components with defects during the AFP manufacturing process.
To achieve this, several improvements to both the simulation and the machine learning
models are required.

The simulation model could be refined by using a smaller element size to represent smaller
defects and to obtain more accurate simulation results. Furthermore, the material model
could be more closely aligned with experimental data, particularly to better represent the
behaviour after failure. For this, an extensive material test campaign should be performed
to provide adequate calibration data for the simulation model. Another important step
is to implement samples with a larger variation to cover a wider range of defect types.
This includes samples with a higher number of defects, additional plies, or fibre orien-
tations other than those used in this work. Defects themselves could also be modelled
more realistically, for example by incorporating the reduced fibre volume content in gap
defect. Additionally, to obtain all mechanical properties of a component, bending and
tension tests should be evaluated alongside compression tests. For thinner samples with
eight plies, the ML should be able to handle different failure modes, such as buckling, and
predict the corresponding mechanical properties. Moreover, it would be useful if the ML
model can output the whole stress strain curve rather than just individual values from it.

Another topic is the integration of additional parameters from the AFP process, such as
the temperature and layup speed. Additionally, it would be advantageous to incorporate
data from the robot arm used for tape placement. During production, the robot generates
a point cloud of the laid tapes from which the defect geometry could be estimated. Con-
verting this point cloud into a suitable format would enable real-time predictions without
manually inserting the sample properties.
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A Appendix

A Appendix: Control Cards Implicit

1 *CONTROL_IMPLICIT_AUTO
2 $# iauto iteopt itewin dtmin dtmax dtexp kfail
3 1 11 5 0.005 2.0 0
4 $# kcycle
5 0
6 $
7 *CONTROL_IMPLICIT_GENERAL
8 $# imflag dt0 imform nsbs igs cnstn form
9 4 0.0003 2 1 2 0 0

10 $# zero_v
11 0
12 $
13 *CONTROL_IMPLICIT_DYNAMICS
14 $# imass gamma beta tdybir tdydth tdybur irate
15 1 0.6 0.38 0.0 1.00000 E281 .00000 E28 0
16 $# alpha
17 0.0
18 $
19 *CONTROL_ACCURACY
20 $# osu inn pidosu iacc
21 1 2 0 1
22 $
23 *CONTROL_IMPLICIT_SOLUTION
24 $# nsolvr ilimit maxref dctol ectol rctol lstol
25 12 11 15 0.001 0.011.00000 E10 0.9
26 $# abstol
27 1.0000E-10
28 $# dnorm diverg istif nlprint nlnorm d3itctl cpchk
29 1 1 1 1 2 0 0
30 $# arcctl arcdir arclen arcmth arcdmp arcpsi arcalf
31 0 0 0.0 1 2 0 0
32 $# arctim
33 0
34 $# lsmtd lsdir irad srad awgt sred
35 4 2 0.0 0.0 0.0 0.0
36 $
37 $---------------------------------------------------------------------
38 $
39 *CONTACT_AUTOMATIC_SINGLE_SURFACE_MORTAR_ID
40 $# cid
41 1
42 $# ssid msid sstyp mstyp sboxid mboxid spr
43 1 0 2 0 0 0 0
44 $# mpr
45 0
46 $# fs fd dc vc vdc penchk bt
47 0.25 0.0 0.0 0.0 0.0 0 0.0
48 $# dt
49 1.00000 E20
50 $# sfs sfm sst mst sfst sfmt fsf
51 1.0 1.0 0.0 0.0 1.0 1.0 1.0
52 $# vsf
53 1.0
54 $# soft sofscl lcidab maxpar sbopt depth bsort
55 0 0.1 0 1.25 3.0 5 0
56 $# frcfrq
57 1
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58 $# penmax thkopt shlthk snlog isym i2d3d sldthk
59 0.0 0 1 1 0 0 0.0
60 $# sldstf
61 0.0
62 $# igap ignore dprfac dtstif unused unused flangl
63 1 1 0.0 0.0 0.0
64 $# cid_rcf
65 0
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C Appendix

C Appendix: Stress-strain curves examples for samples
with 8 plies

This section shows a few stress-strain curves of samples with 8 plies. Due to the buck-
ling, the samples with 8 plies behave very differently than the samples with 12 or 16
plies. Therefore, the 8 plies samples are removed from the dataset. The settings of the
simulations are described in the beginning of Section 4.
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Figure C.1: Stacking [−45°, 45°, 0°, 90°]s, triangular gap in ply 5 at p = (−18.8, 7.8), angle
= 9.4
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Figure C.2: Stacking [90°,−45°, 45°, 0°]s, triangular gap in ply 5 at p = (14.1,−12.8),
angle = 9.5
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Figure C.3: Stacking [45°,−45°, 90°, 0°]s, triangular gap in ply 8 at p = (−45.3,−61.4),
angle = 6.5
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Figure C.4: Stacking [45°,−45°,−45°, 45°]s, rectangular overlap in ply 4 at p = (−0.5, 5),
width = 1.3
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