elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Surrogate-based Uncertainty Quantification of the High-Fidelity Coupled Aero-Structural Performance of a High-Aspect Ratio Transport Aircraft

Balani, Anjali Umesh und Bekemeyer, Philipp und Reimer, Lars (2025) Surrogate-based Uncertainty Quantification of the High-Fidelity Coupled Aero-Structural Performance of a High-Aspect Ratio Transport Aircraft. In: AIAA Aviation Forum and ASCEND, 2025. AIAA Aviation 2025, 2025-07-21 - 2025-07-25, Las Vegas, USA. doi: 10.2514/6.2025-3340. ISBN 978-162410738-2.

[img] PDF - Nur DLR-intern zugänglich
2MB

Offizielle URL: https://arc.aiaa.org/doi/epdf/10.2514/6.2025-3340

Kurzfassung

Uncertainties in operating and manufacturing conditions can cause significant alterations in aircraft performance. A step on the way to mitigating this off-design performance reduction is understanding how variations in certain inputs affect aircraft performance. Uncertainty Quantification and Propagation methods allow one to investigate the impact of several uncertainties on one or several quantities of interest. In this work, we quantify the effect of operational and manufacturing uncertainties on aircraft performance, represented by the estimated fuel mass necessary to complete a known flight of 2500 NM. A novel contribution in this work is propagating these uncertainties for a realistic configuration, with aero-structural characteristics computed using coupled high-fidelity solvers for the disciplines involved. As the high cost of these simulations makes conventional uncertainty quantification methods infeasible, we employ surrogate-based uncertainty quantification instead, leveraging Gaussian process models to alleviate the computational burden. In investigating the influence of operational uncertainties in Mach number, flight altitude, and payload mass, we find that Mach number and flight altitude have much larger first order effects on aircraft performance. In investigating the influence of structural and geometric uncertainties in structural thickness and spanwise twists, we find that spanwise twists have a much larger impact on aircraft performance.

elib-URL des Eintrags:https://elib.dlr.de/216759/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Surrogate-based Uncertainty Quantification of the High-Fidelity Coupled Aero-Structural Performance of a High-Aspect Ratio Transport Aircraft
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Balani, Anjali Umeshanjali.balani (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bekemeyer, PhilippPhilipp.Bekemeyer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Reimer, LarsLars.Reimer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Juli 2025
Erschienen in:AIAA Aviation Forum and ASCEND, 2025
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.2514/6.2025-3340
ISBN:978-162410738-2
Status:veröffentlicht
Stichwörter:Surrogate-based uncertainty quantification, robust optimization, operational uncertainty, manufacturing uncertainty, High-fidelity coupled aerostructural, DLR-F25
Veranstaltungstitel:AIAA Aviation 2025
Veranstaltungsort:Las Vegas, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:21 Juli 2025
Veranstaltungsende:25 Juli 2025
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Effizientes Luftfahrzeug
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L EV - Effizientes Luftfahrzeug
DLR - Teilgebiet (Projekt, Vorhaben):L - Virtuelles Flugzeug und Validierung
Standort: Braunschweig
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > CASE, BS
Hinterlegt von: Balani, Anjali Umesh
Hinterlegt am:27 Okt 2025 09:03
Letzte Änderung:30 Okt 2025 09:38

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.