Carradori, Jacopo and Sagliano, Marco and Mooij, Erwin (2025) Transformer-Based Robust Feedback Guidance for Atmospheric Powered Landing. In: AIAA SciTech 2025 Forum, pp. 1-23. American Institute of Aeronautics and Astronautics. AIAA Scitech 2025, 2025-01-06 - 2025-01-10, Orlando, United States. doi: 10.2514/6.2025-2771. ISBN 978-162410723-8.
|
PDF
1MB |
Official URL: https://doi.org/10.2514/6.2025-2771
Abstract
Rocket reusability is a key factor in enabling quicker and more cost-effective access to space. However, landing on Earth poses significant challenges due to the dynamic and highly uncertain environment. A robust Guidance, Navigation, and Control system is essential to guide the vehicle to the landing site while meeting terminal constraints and minimizing fuel consumption. This research integrates Meta-Reinforcement Learning with Gated Transformer XL Neural Networks to enhance the robustness of the powered guidance with respect to atmospheric and aerodynamic uncertainties, navigation and control errors, and dispersed initial conditions. By employing a 6-Degrees-of-Freedom dynamics model and accurate vehicle and environmental simulations, the agent learns a higher fidelity guidance policy compared to existing literature, demonstrating successful and robust performance in Monte Carlo simulations. In this complex scenario, the innovative attention-based neural networks also outperform recurrent neural networks, widely used for Reinforcement Learning-based space guidance applications.
| Item URL in elib: | https://elib.dlr.de/216757/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Document Type: | Conference or Workshop Item (Lecture) | ||||||||||||||||
| Title: | Transformer-Based Robust Feedback Guidance for Atmospheric Powered Landing | ||||||||||||||||
| Authors: |
| ||||||||||||||||
| Date: | January 2025 | ||||||||||||||||
| Journal or Publication Title: | AIAA SciTech 2025 Forum | ||||||||||||||||
| Refereed publication: | Yes | ||||||||||||||||
| Open Access: | Yes | ||||||||||||||||
| Gold Open Access: | No | ||||||||||||||||
| In SCOPUS: | Yes | ||||||||||||||||
| In ISI Web of Science: | No | ||||||||||||||||
| DOI: | 10.2514/6.2025-2771 | ||||||||||||||||
| Page Range: | pp. 1-23 | ||||||||||||||||
| Publisher: | American Institute of Aeronautics and Astronautics | ||||||||||||||||
| ISBN: | 978-162410723-8 | ||||||||||||||||
| Status: | Published | ||||||||||||||||
| Keywords: | 6-DoF Rocket Landing; AI; Machine Learning; Transformers; Meta-Reinforcement Learning; Optimal Control; Neural Networks | ||||||||||||||||
| Event Title: | AIAA Scitech 2025 | ||||||||||||||||
| Event Location: | Orlando, United States | ||||||||||||||||
| Event Type: | international Conference | ||||||||||||||||
| Event Start Date: | 6 January 2025 | ||||||||||||||||
| Event End Date: | 10 January 2025 | ||||||||||||||||
| Organizer: | American Institute of Aeronautics and Astronautics | ||||||||||||||||
| HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
| HGF - Program: | Space | ||||||||||||||||
| HGF - Program Themes: | Space Transportation | ||||||||||||||||
| DLR - Research area: | Raumfahrt | ||||||||||||||||
| DLR - Program: | R RP - Space Transportation | ||||||||||||||||
| DLR - Research theme (Project): | R - Project CALLISTO [RP] | ||||||||||||||||
| Location: | Bremen | ||||||||||||||||
| Institutes and Institutions: | Institute of Space Systems > Navigation and Control Systems | ||||||||||||||||
| Deposited By: | Sagliano, Marco | ||||||||||||||||
| Deposited On: | 26 Sep 2025 10:05 | ||||||||||||||||
| Last Modified: | 26 Sep 2025 10:05 |
Repository Staff Only: item control page