Shutin, Dmitriy und Prieto Ruiz, Victor Scott und Hinsen, Patrick und Wiedemann, Thomas (2025) Multi-Agent Adaptive Super-resolution Sparse Source Localization for Advection-Diffusion Processes. In: 2025 IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 2025). IEEE. 2025 IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2025-12-14, Melia Caribe, Dominican Republic. (im Druck)
|
PDF
- Nur DLR-intern zugänglich
491kB |
Kurzfassung
This work presents a multi-agent system for the adaptive detection and localization of gas sources, based on sequentially collected concentration measurements. Gas distribution is modeled using stationary, non-homogeneous advection-diffusion PDE, driven by a superposition of unknown, arbitrarily located Dirac measures that represent the gas sources. To estimate both the number and locations of these sources, SBL is integrated with a combine-then-adapt gradient optimization strategy, resulting in an adaptive inversion algorithm capable of estimating both the source support and the concentration field in 2D. Unlike current approaches that require access to the full dataset, the proposed method operates adaptively, enabling real-time estimation achieving a similar estimation accuracy. This results in a more robust and efficient solution for gas source localization in complex environments using realistic sensors, while also offering greater flexibility in data collection.
| elib-URL des Eintrags: | https://elib.dlr.de/216366/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
| Titel: | Multi-Agent Adaptive Super-resolution Sparse Source Localization for Advection-Diffusion Processes | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | 2025 | ||||||||||||||||||||
| Erschienen in: | 2025 IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 2025) | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| Verlag: | IEEE | ||||||||||||||||||||
| Status: | im Druck | ||||||||||||||||||||
| Stichwörter: | gas source localization, sequential Bayesian inference, advection-diffusion PDE, sparse Bayesian learning | ||||||||||||||||||||
| Veranstaltungstitel: | 2025 IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing | ||||||||||||||||||||
| Veranstaltungsort: | Melia Caribe, Dominican Republic | ||||||||||||||||||||
| Veranstaltungsart: | Workshop | ||||||||||||||||||||
| Veranstaltungsdatum: | 14 Dezember 2025 | ||||||||||||||||||||
| Veranstalter : | IEEE | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Kommunikation, Navigation, Quantentechnologien | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R KNQ - Kommunikation, Navigation, Quantentechnologie | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Schwarmnavigation | ||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nachrichtensysteme | ||||||||||||||||||||
| Hinterlegt von: | Shutin, Dmitriy | ||||||||||||||||||||
| Hinterlegt am: | 17 Dez 2025 16:52 | ||||||||||||||||||||
| Letzte Änderung: | 17 Dez 2025 16:52 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags