elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Data-Driven Phase-Resolved Sea Surface Reconstruction From Synthetic X-Band Radar Data

Wedler, Mathies und Desmars, Nicolas und Stender, Merten und Ehlers, Sören und Klein, Marco (2025) Data-Driven Phase-Resolved Sea Surface Reconstruction From Synthetic X-Band Radar Data. In: ASME 2025 44th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2025, 7. American Society of Mechanical Engineers. ASME 2025 44th International Conference on Ocean, Offshore and Arctic Engineering, 2025-06-22 - 2025-06-27, Vancouver, British Columbia, Canada. doi: 10.1115/OMAE2025-156721. ISBN 978-079188896-4.

[img] PDF
3MB

Offizielle URL: https://dx.doi.org/10.1115/OMAE2025-156721

Kurzfassung

Accurate phase-resolved information on the sea surface can be crucial for well-founded decision making in the maritime sector. This information can be obtained by analyzing X-band radar measurements, which contain sparse information on the surrounding sea. This analysis, referred to as sea surface reconstruction, usually relies on simplified physical models or computationally expensive optimization procedures, thus creating a trade-off between accuracy and computational cost. This work proposes a purely data-driven approach, which aims at providing accurate sea surface reconstruction from X-band radar data in real-time. For this, state-of-the-art methods from computer vision and deep learning were combined to a model, which maps successive historic radar images to the 2D phase-resolved sea surface. The training data were generated using the high-order spectral method to model nonlinear hydrodynamic effects, and features a wide range of governing sea-state conditions. The synthetic radar images were derived from these simulations using a numeric radar model. The results show that the proposed data-driven approach is capable of faithfully reconstructing the 2D sea surface from sparse radar information over a wide range of governing sea state parameters. Moreover, the approach is able to extrapolate over the radar blind zone, yielding a complete reconstruction of the sea surface within the radar radius.

elib-URL des Eintrags:https://elib.dlr.de/216118/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Data-Driven Phase-Resolved Sea Surface Reconstruction From Synthetic X-Band Radar Data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Wedler, Mathiesmathies.wedler (at) dlr.dehttps://orcid.org/0000-0002-2809-2678190679980
Desmars, Nicolasnicolas.desmars (at) dlr.dehttps://orcid.org/0000-0001-8248-2899190679981
Stender, Mertenmerten.stender (at) tu-berlin.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ehlers, Sörensoren.ehlers (at) dlr.dehttps://orcid.org/0000-0001-5698-9354NICHT SPEZIFIZIERT
Klein, Marcomarco.klein (at) dlr.dehttps://orcid.org/0000-0003-2867-7534190679983
Datum:2025
Erschienen in:ASME 2025 44th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2025
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
Band:7
DOI:10.1115/OMAE2025-156721
Verlag:American Society of Mechanical Engineers
Name der Reihe:Proceedings of the ASME 2025 44th International Conference on Ocean, Offshore and Arctic Engineering
ISBN:978-079188896-4
Status:veröffentlicht
Stichwörter:Deep Learning, X-band radar, phase-resolved sea surface reconstruction, high-order spectral method
Veranstaltungstitel:ASME 2025 44th International Conference on Ocean, Offshore and Arctic Engineering
Veranstaltungsort:Vancouver, British Columbia, Canada
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:22 Juni 2025
Veranstaltungsende:27 Juni 2025
Veranstalter :American Society of Mechanical Engineers
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):V - keine Zuordnung
Standort: Geesthacht
Institute & Einrichtungen:Institut für Maritime Energiesysteme > Schiffsperformance
Hinterlegt von: Wedler, Mathies
Hinterlegt am:28 Aug 2025 12:25
Letzte Änderung:19 Sep 2025 11:25

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.