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ABSTRACT
Accurate phase-resolved information on the sea surface can

be crucial for well-founded decision making in the maritime sec-
tor. This information can be obtained by analyzing X-band
radar measurements, which contain sparse information on the
surrounding sea. This analysis, referred to as sea surface recon-
struction, usually relies on simplified physical models or com-
putationally expensive optimization procedures, thus creating a
trade-off between accuracy and computational cost. This work
proposes a purely data-driven approach, which aims at providing
accurate sea surface reconstruction from X-band radar data in
real-time. For this, state-of-the-art methods from computer vi-
sion and deep learning were combined to a model, which maps
successive historic radar images to the 2D phase-resolved sea
surface. The training data were generated using the high-order
spectral method to model nonlinear hydrodynamic effects, and
features a wide range of governing sea-state conditions. The
synthetic radar images were derived from these simulations us-
ing a numeric radar model. The results show that the proposed
data-driven approach is capable of faithfully reconstructing the
2D sea surface from sparse radar information over a wide range
of governing sea state parameters. Moreover, the approach is
able to extrapolate over the radar blind zone, yielding a complete
reconstruction of the sea surface within the radar radius.

Keywords: Deep Learning, X-band radar, phase-resolved
sea surface reconstruction, high-order spectral method

1. INTRODUCTION
Phase-resolved wave predictions have manifold applications

in the maritime sector, ranging from decision support for safety-
related operations like boarding, lifting or helicopter landing, to
the active control of wave energy converters. A common pipeline
for phase-resolved wave predictions involves two essential steps,
the reconstruction of the phase-resolved sea surface from infor-
mation on the surrounding wave field, followed by the spatio-
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temporal propagation or prediction based on the reconstructed
sea surface [1–6]. The non-coherent X-band marine radar is a
common remote sensing system to gather information on the sur-
rounding wave field. The received signal or backscatter is a highly
modulated map of the sea surface within a radius of 2–5 km [7].
The dominant modulation effects are caused by the alignment of
the radar antenna relative to the illuminated wave facets, as well
as the occlusion of waves further away. The challenge in sea sur-
face reconstruction is the accurate and ahead-of-time translation
of this sparse map to the phase-resolved wave field. The accu-
racy is of particular importance, as the reconstruction serves as
the initial condition for the wave prediction and thus constraints
its fidelity. While reconstruction approaches based on the 3D
FFT reportedly achieved correlations above 90% w.r.t. the real
wave [1, 7], studies have shown that the reconstruction phase
remains the limiting factor for real-time capable phase-resolved
wave predictions [2, 8].

This shortcoming in traditional methods has motivated the
application of data-driven methods for the sea surface reconstruc-
tion from X-band marine radar [6, 9]. Machine learning (ML)
resembles a class of data-driven methods, which are capable
of approximating any continuous function to arbitrary accuracy
[10, 11]. Classical ML approaches have no physical priors but
learn descriptive pattern directly from data. This results in a
highly flexible approach which does not rely on the existance of
physical models, and eliminates the dependence on fine time steps
known from the numeric world. The majority of computational
cost is shifted to the training phase, the trained model is a fixed
mapping operator with minimal online cost. Ehlers et al. [6] have
presented a study on the data-driven phase-resolved sea surface
reconstruction from upstream X-band radar information in 1D.
The work has compared two ML models on the task, the U-Net
[12] and the Fourier neural operator (FNO) [13]. The synthetic
radar data has been generated using the nonlinear high-order
spectral method [14, 15] and a numeric radar tool that applies
geometric modulation effects. While both models have yielded
highly accurate sea surface reconstructions, the FNO has been
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identified to be slightly superior to the U-Net. Zhao et al. [9]
have attempted the 2D phase-resolved sea surface reconstruction
using a 2D U-Net [12] based on a single radar image. The under-
lying synthetic wave data has been generated by superposition of
single harmonic waves, the synthetic radar data has been derived
from the linear waves using a geometric radar model. The results
have indicated high reconstruction accuracy within the range of
the radar, excluding the inner radar blind zone.

This work builds on the prior data-driven attempts [6, 9] and
aims at combining their strengths into a single powerful approach
to the 2D phase-resolved sea surface reconstruction from syn-
thetic X-band radar. In constrast to the prior approaches [6, 9],
the sea surface reconstruction was attempted within the whole
radar radius, i.e., the reconstruction involves the radar blind zone.
The model consequently had to generalize over the unknown area
around the radar location. The wave- and radar model described
in Section 2 established a data basis, that reflects the real-world
problem as closely as possible. We are confident, that a high
quality data basis will result in a superior data-driven reconstruc-
tion of the sea surface. The wave model yielded fully evolved
wind-induced nonlinear waves over a wide range of characteristic
sea state parameters. The numeric radar was modeled based on
the radar equation and augmented the commonly used geomet-
ric approach to a numeric radar with system losses. Section 3
subsequently introduces the ML framework that was used for the
sea surface reconstruction. Section 4 starts with a comparison
of 9 different training setups to estimate the optimal number of
consecutive radar snapshots for the reconstruction. Afterwards,
the best performing model is evaluated in detail. In Section 5,
the conclusions and a brief outlook are provided.

2. DATA GENERATION
Supervised ML approaches attempt to learn patterns from

data, and apply this knowledge to solve new problems within the
same problem space [16, 17]. The quality of the training data
is consequently of particular importantance, as it constraints the
quality of the ML model itself. The most holistic representation
of any physical problem is arguably measurement data from real-
world processes. However, the collection of real-world data in
sufficient quality and quantity to train an ML model is, depend-
ing on the problem, often not feasible. In those cases, numerical
methods are common practice for the targeted generation of syn-
thetic data.

The scope of this work is the phase-resolved sea surface
reconstruction from synthetic X-band radar data. During the
training, the model attempted to map the sparse X-band radar
data to the corresponding sea surface data. Since the collection
of ground truth data, i.e., sea surface elevations that are sampled
at equidistant grid points over a large domain, is not feasible, non-
linear sea surface simulations substitute the absence real-world
data. The synthetic X-band radar data were derived from the sea
surface data using a numeric radar model, that aims at closely
resembling the characteristics of a real X-band radar apparatus.

2.1 Nonlinear wave model
The sea surface data served as the baseline for this work, as it

ultimately determined the quality of the synthetic radar data, and

thus the ML model. To achieve the best possible results, the sea
surface data has to faithfully depict the dynamics of water waves.
In this work, the high-order spectral (HOS) method [14, 15] was
used to simulate the time evolution of water waves. The HOS
method takes into account physically existing (resonant and non-
resonant) nonlinear interactions, and is thus capable of generating
high-fidelity simulations of sea surface dynamics.

The underlying wave model is based on potential flow the-
ory. The flow characteristcs are described by a velocity potential
q(G, H, I, C), which, under the assumption of irrotational flow and
incompressible and inviscid fluid, satisfies the Laplace equation

∇2q =
m2q

mG2 + m2q

mH2 + m2q

mI2 = 0, (1)

where I = 0 is the mean free surface elevation. The boundary
value problem can be expressed in terms of the kinematic and
dynamic boundary conditions at the free surface I = 0

qI − qG[G − qH[H − [C = 0 and qC +
1
2
(∇q)2 + 6[ = 0, (2)

as well as the bottom boundary condition qI = 0 at the seabed.
The HOS method estimates the kinematic and dynamic boundary
conditions (2) as a pertubation series of arbitrary nonlinear order
" around I = 0. Former studies have shown, that order " ≤ 4
models all relevant nonlinear effects [2, 18].

In this work, the numerically efficient pseudo-spectral ap-
proach which has been proposed by West et al. [15] was used for
the nonlinear simulation of water waves with order " = 4. The
nonlinear HOS simulations were initialized with linear sea states,
that were generated using superposition of harmonic waves [19]
with random phase i ∈ [0, 2c], and amplitudes sampled from
a JONSWAP-TMA [20, 21] spectrum. The space of character-
istic sea state parameters was spanned by three wave spreadings
= ∈ {4, 30, 300} with the continuous directional spreading func-
tion [22]

� (\, =) = cos(\ − \0)=
(

Γ(=/2 + 1)
√
cΓ(=/2 + 0.5)

)
, (3)

where higher = lead to less directional spreading, and thus more
long-crested waves [19]. For each spreading, 11 peak wave-
lengths !p ∈ {100, 110, 120, . . . , 200}m, and 26 wave steepness
values Y ∈ {0.01, 0.015, 0.02, . . . , 0.135} were defined. The
peak wavelength corresponds to the wavenumber :p = 2c/!p, at
which the peak of the wave spectrum is located. The steepness
Y = c�S/!p is proportional to the ratio of the significant wave
height �S and the peak wavelength, and serves as a dimension-
less measures for the steepness of the wave slopes. The simula-
tion grid resolved the square domain of size (4000 × 4000) m at
1024 × 1024 grid points. For numerical stability, the HOS sim-
ulations were performed with a relaxation period of )a = 10)p,
throughout which the nonlinearities were gradually ramped up
[23]. The fully developed nonlinear sea states were simulated for
Csim = 100 s with a saving interval of 3C = 0.1 s.

2.2 X-band radar model
The synthetic X-band radar data were derived from the HOS

sea surface simulations using a numeric radar model. This radar
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model was based on the radar equation [24]

%r =
%t�

2_2f

(4c)3'4 ∏L8

, (4)

which estimates the received power %r from the transmitted
power %t, antenna gain �, radar wavelength _, radar cross section
(RCS) f, distance ', and various loss terms L8 . X-band radar
operates in the frequency range 5 ∈ [8, 12] GHz [24, 25]. Here,
an operating frequency of 5 = 10 GHz was assumed, such that
_ ≈ 0.03 m. The RCS f is a measure for the amount of in-
formation that is reflected by the target and received by the radar
antenna. The amount of information reflected by the environment
mainly depends on the relative orientation of the antenna and the
illuminated wave facet [26]. This can be geometrically expressed
in terms of the angle between the radar beam vector u(r, C) and
the sea surface normals n(r, C), and is usually refered to as the tilt
modulation

T(r, C) = max
(
0,

〈u, n〉
‖u‖ · ‖n‖

)
∈ [0, 1], (5)

where r is the range vector along the radius at mean free surface
elevation I = 0. The shadowing modulation describes the loss of
information due to occlusion. Shadowing occurs, as a wave facet
at distance A ′ blocks the direct line of sight between the antenna
and local parts of the sea surfaces at A with A ′ < A . The binary
shadowing mask [26]

<(r, C) =
{

0 if (A ′ < A) ∧ (Θ0 (A ′, C) ≥ Θ0 (A, C)),
1 otherwise,

(6)

can be constructed from the local incidence angle

Θ0 (r, C) = arccos
(
〈eI , u〉
‖u‖

)
, (7)

with normal vector in I-direction eI . The radar blind zone was
realized by <(r, C) := 0∀A ∈ r : A ≤ 200 m. The amount of
information received by the antenna depends on the clutter area
[12, 25, 26]. Moreover, the reception is subject to speckle noise
n(r, C), which is common in optical systems [26]. Here, the
speckle noise was modeled by sampling random values from a
exponential distribution with a scale of 1. Assuming a rectangular
pulse, the clutter area is given by �c = AΔqΔA [25, 26], and the
RCS can be estimated by

f(r, C) ≈ T4 (r, C)<(r, C)n(r, C)�c. (8)

Radiowave propagation is subject to losses, for which the Inter-
national Telecommunication Union (ITU) has provided in-depth
modeling recommendations. The radar beam travels a certain
distance through the earth’s atmosphere [24, 25]. The loss over
traveled distance ' = ‖u‖ was implemented through the two-way
path loss [27, 28]

Lfsp,dB = 20 log10

(
4c'
_

)
dB. (9)

The atmospheric attenuation depends on the ambient temperature
and pressure at sea level [29], for which the ITU has defined

the reference values )amb = 288.15 K and %amb = 1013.25 hPa
[28]. With an operating frequency 5 = 10 GHz, the atmospheric
attenuation was modeled as Laa,dB = 0.0142 dB km−1 [29].

The transmitted power %t and antenna gain � were unknown
system constants. Instead of assuming values for %t and �, the
radar equation (4) was expressed in terms of dB,

%r,dB ≈ 2_dB + fdB − 4'dB −
∑

L8,dB + �. (10)

The conversion to logarithmic scale (xdB = 10 log10(x) with
arbitrary quantity in linear scale x) allowed to summarize all
unknown system constants to an offset term � [26].

The radar model (10) with an installation height of ℎ = 15 m
and a maximum range of Amax = 2000 m was used to generate
synthetic X-band radar data from the HOS simulations data. The
angular frequency of the radar was assumed to beΩ = 2c/1.5 s−1,
which translated to a full revolution every 3Crev = 1.5 s. With the
HOS saving interval of 3C = 0.1 s, a full radar revolution was build
from circular sectors of 3Crev/3C = 15 consecutive radar images.
Consequently, each radar image exhibited multiple temporal gaps.
The most pronounced gap of 3Crev was located along H = 0 for
positive G. The final radar model resolved the spatial domain of
(4000 × 4000) m at 512 × 512 grid points.

3. MACHINE LEARNING FRAMEWORK
In this Section, the ML framework that was used in this study

is presented. Section 3.1 introduces the proposed model architec-
ture for the data-driven phase-resolved sea surface reconstruction.
Afterwards, Section 3.2 briefly describes the data preprocessing,
as well as the training process.

3.1 Machine learning model
From a data-driven perspective, the prediction of the phase-

resolved sea surface from X-band radar data can be interpreted as
an image-to-image prediction task. Generally speaking, an image
is a special case of numerical data, that is structured in large
multi-dimensional arrays. Convolutional neural networks (CNN)
form a class of neural network architectures, that are designed to
efficiently process such data [16, 17]. The weights are organized
in multidimensional kernels. The size of these kernels is a design
parameter, and is typically chosen way smaller than the size of the
input data [17]. While most neural network archetypes dedicate
one unique weight to each input, convolutional models move the
kernel relative to the input. Hence, the same set of weights is
applied to different parts of the input. This concept of parameter
sharing allows CNNs to learn recurring local patterns at different
locations in the data, and significantly reduces the number of
trainable weights [17].

In this work, we propose a convolutional network architecture
to attempt the sea surface reconstruction. The chosen model
architecture followed the well-known U-Net topology [12], which
is a convolutional auto-encoder with residual connections [30]
between the encoding- and the decoding path, and augmented
it with a Fourier Neural Operator (FNO) [13] in the bottleneck.
FNOs excel at learning global features, and thus complement
the convolutional nature of the U-Net. A FNO layer consists
of two parallel paths. The first path transforms the input to the
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FIGURE 1: SCHEMATIC OF ML FRAMEWORK. THE MODEL MMAPS
τ SUCCESSIVE HISTORIC RADAR IMAGES (t ≤ 0) TO THE SEA
SURFACE AT PRESENT TIME (t = 0).

complex Fourier space via a discrete Fourier transform (DFT).
The resulting Fourier modes are truncated to the lowest < modes,
which are then multiplied with the trainable weights of the FNO.
Next, the modes are padded with zeros to match their initial shape,
and transformed back to the original data space using an inverse
DFT. The second path applies a linear transform, which accounts
for non-periodic boundary conditions in the input. Moreover, it
implicitly passes through higher order modes, which are truncated
in the upper path. The results of both paths are added, and the
result is passed through a GELU activation [31].

In the encoding path of the U-Net, each convolutional block
bisected the spatial resolution of the data. This way, the model
learned local features on different scales of the data. By reducing
stepwise the spatial resolution throughout the forward path, only
the most relevant features were maintained, i.e., the information
density in the latent space was maximized. The decoder inflated
the compressed information from the forward path, and combined
it with the high resolution feature maps from the residual con-
nections. Up- and downsampling of the data was realized using
nearest neighbor interpolation followed by a convolution [32].
All convolutional layers except the linear output layer applied
leaky ReLU activation. The final model had around 1.2 million
trainable parameters; the exact number depends on the number
of input channels g, and therefore varied slightly throughout this
study.

3.2 Training process
Overall, 858 HOS simulations with 1000 time steps each

formed the data foundation. The radar was limited in range
by Amax = 2000 m. Since the reconstruction of the sea surface
outside the radar range was not targeted, the HOS simulations
were cut off at A = Amax, i.e., [(G, H, C) := 0 for

√
G2 + H2 ≥ Amax.

To account for the mismatch in spatial resolution between radar
images and sea surface data, the latter was undersampled to a
512× 512 grid. The data were split into a training-, a validation-,
and a test data set using a stratified split w.r.t. to the governing sea
state parameters peak wavelength !P, steepness Y, and spreading
=. Splitting the data by sea state parameter prevented information
leakage between the data sets, which is a common pitfall in ML
[33]. The training set held 80% of all data (686 simulations), the
validation and test set held 10% each (86 simulations). The data
sets were processed with a sliding window, where the window size
determined the number of consecutive radar snapshots g. This
way, # =

⌊
CsimC

−1
rev

⌋
− g + 1 labeled samples (x ∈ R512×512×g , y ∈

R512×512) were generated from a single simulation. Hence, with
a context size of, e.g., g = 16, there were 34 986 samples in
the training-, and 4 386 samples in the validation- and test set,
respectively.

The training was conducted using the surface similiarity pa-
rameter (SSP) loss function [34, 35]

�SSP (y, ŷ) =

√∫
|Y − Ŷ |23k√∫

|Y |23k +
√∫

|Ŷ |23k
∈ [0, 1] (11)

where Y is the spatial DFT of y and k = [:G , :H]ᵀ the wavenum-
ber vector. By comparing the ground truth y to the prediction
ŷ in the complex Fourier space, the SSP explicitly penalizes de-
viations in magnitude and phase [35]. The SSP is normalized
to the range [0, 1]; SSP(y, ŷ) = 0 indicates perfect agreement
among y and ŷ, SSP(y, ŷ) = 1 is only achieved for ŷ = −y or
(ŷ = 0 ∧ y ≠ 0). In this work, the SSP loss (11) was augmented
with a lowpass filter, which operated only on the ground truth y,
and thus pushed the model towards focussing on a certain fre-
quency range of the wave spectrum [36]. The filter was designed
to attentuate all frequecy components : ≥ 6.0:p, which, from
an empirical standpoint, preserved all relevant information in y.
In consequence, SSP = 0 reflected perfect agreement among y
and ŷ for : < 6.0:p only. Furthermore, the Adam optimizer
[37] with learning rate U = 0.001 was used to adapt the weights
during the training. An early stopping routine monitored the opti-
mization process, and terminated the training, once there were no
improvements in the validation loss over 10 consecutive epochs.
One training epoch with a batch size of 16 took about 10 minutes
on a workstation with an Nvidia® A100 Tensor Core GPU with
40GB VRAM and an Intel® Xeon® Platinum 8358 12 core CPU.

4. RESULTS
In the following, the results of the data-driven sea surface

reconstruction are presented. First, the impact on the number of
consecutive radar snapshots g on the reconstruction accuracy of
the model is discussed. Then, the best performing model set up is
evaluated in depth. After a global perspective on the results, the
best and worst model predictions on unseen data are inspected.
All results are reported in terms of SSP. The SSP relies on the
discrete Fourier transform, cf. (11), and inherently requires a
square domain for evaluation. To exclude the impact of potential
errors in the reconstruction for ' > 2000 m, a mask was applied to
both the true and reconstructed wave prior to the error assessment
via SSP. This mask was implemented as a circular Tukey window
[38] with U = 0.25, which imposed a smooth transition to zero
at ' = 2000 m. Later on, the individual reconstructions are
additionally evaluated using the point-wise absolute error.

4.1 Study on the context size
The context refers to the number of consecutive historic radar

images (C ≤ 0) that were mapped to the sea surface elevation at
C = 0. Using a larger context was expected to improve the
reconstruction result, as the model was given more information.
In this study, 9 context sizes of g ∈ {4, 6, 8, . . . , 20} historic radar
images were compared. One model training was conducted for

4 © 2025 by ASME



each context size. By setting a global random seed, all models
were initialized with the same weights. The first layer formed an
exception here, since the number of weights in a convolutional
layer scales with the depth of the input, i.e., g. As a result,
the initial weights in the first layer were not identical across the
models. To further maintain consistency, the same stratified data
split was used across all model trainings.

Figure 2 shows a statistic comparison on the impact of the
context size on the reconstruction accuracy on unseen data. The
results are grouped by spreading = ∈ {4, 30, 300}, and reported
twofold for each model: The left-hand side (dark blue) indicates
the results when evalutating over the whole domain (i.e., within
the radar radius ' ≤ 2000 m), the right-hand side (light blue)
indicates the results for evaluation on the center (2000×2000) m.
For convenience, the evaluation on the whole domain is refered
to as case (i), and on the center cutout is referred to as case (ii).
For each case and model, the reconstruction accuracy distribution
is visualized using a box- and a violin-plot. While the box plot
provides basic statistic information on the data like the median,
the size of the interquartile range, and the existance of outliers
(marked by triangles), the violin plot adds valuable information
about the density curves of the underlying distributions.

The density curves exhibit a particular shape for each spread-
ing =, and are shifted towards the higher (lower) SSP regime for
smaller (larger) context size. The results for g = 12 break that
trend by being slightly worse compared to adjacend values of g.
This may be attributed to unfavorable weight initialization for that
particular model, and may be diminished by performing a K-fold
cross validation, i.e., train the same models with different training
distributions1 [17]. For = = 30, the density curves for case (i)
and (ii) are of similar shape, for = ∈ {4, 300}, the overall shape
strongly depends on the evaluated spatial domain. Across all
spreadings =, case (ii) generally exhibits higher median SSP and
more outliers towards high SSP values. However, there are a few
exceptions, where the median SSP for case (ii) is on par or lower
than the median SSP for case (i), cf., e.g., = ∈ {30, 300} ∧ g = 4.
Despite the generally worse performance observed for case (ii),
the best reconstruction for = = 4 is always provided for the center
cutout of the domain. In constrast, for = ∈ {30, 300}, there is an
offset in favor of case (i) between the density curves, which gets
more pronounced with increasing context size. While all models
perform better on long-crested sea (= = 300) than short-crested
sea (= = 4), the median SSP converges with increasing context
size. In particular, there exist only minor differences between the
results for a context size g ∈ [14, 20], indicating that there is no
benefit from using a context size greater than 14 radar snapshots.
With regards to inference speed, there is no significant difference
across the tested configurations. For instance, the inference of a
single input on the GPU took 72± 7 ms for g = 16, and 73± 4 ms
for g = 4 (CPU: 184± 13 ms, and 185± 6 ms, respectively; mean
and standard deviation over 1000 iterations, batch size of 1).

4.2 Evaluation of the ML model
In Section 4.1, the sea surface reconstruction model with a

context size of g = 14 historic radar snapshots is identified to pro-

1Due to time constraints, K-fold cross validation is not performed in this study.

vide the best balance between reconstruction accuracy and model
complexity. This model, formally referred to as M14, is now
evaluated in detail. First, a global picture of the reconstruction
accuracies is presented. Then, the best and the worst recon-
structions on unseen data are examined to highlight the models
strengths and shortcomings.

Evaluation over parameter space. Figure 3 provides an
in-depth look into the performance of M14 by resolving the recon-
struction accuarcy in peak wavelength !p and wave steepness Y.
The upper row shows the results for case (i), the lower row shows
the results for case (ii). The spreading increases from left to right.
Cells marked with ”•” indicate samples from the validation set,
cells marked with ”+” indicate samples from the test set. Since
the model is fit to the training set, both the validation- and test set
are considered unseen data and thus valid test cases for the model
performance. In the center of each panel, the mean and standard
deviation of the SSP is stated.

The results show a general performance degradation with
increasing directionality. For case (i), the mean reconstruction
accuracy drops from SSP = 0.106 for long-crested sea surfaces to
SSP = 0.144 for short-crested sea surfaces. The results for = = 30
sit right in between with SSP = 0.115. The standard deviation
ranges within f2 = 0.0235 ± 0.0015 for all three spreadings =.
Besides the difference in reconstruction accuracy, the resolved
errors indicate a similar model behavior for all spreadings. The
performance degrades for decreasing steepness and wavelength,
culminating in the worst reconstruction accuracy for !p = 100 m
and Y = 0.01. The results on unseen data (marked with ”+”
and ”•”) integrate well into the overall picture, indicating that the
model generalizes well. While the results for case (ii) exhibit the
same characteristics as described before, there is a slight increase
in mean accuracy and standard deviation.

The overall degradation in accuracy with decreasing wave
spreading = can be attributed to the more complex wave dy-
namics with increased directionality. For = = 4, the directional
spectrum is way broader, leading to manifold wave directions.
This results in a more complex sea surface, which is character-
ized by many small-scale patterns. In contrast, = = 300 yields
almost vertical wave crests with a more uniform wave propaga-
tion in positive G-direction. The dependence on wave steepness
is most certainly linked to the correlation between wave height
and slope for constant !p. The wave steepness first and foremost
steers the amplitude of a wave. This translates to steeper slopes,
hence smaller angles of incidence between radar beam and wave
surface normals, and thus stronger radar return signals for higher
values of Y. The amount of shadowed area, i.e., missing values
in the data, also correlates with the steepness. For a single radar
snapshot, the amount of shadowed area within ' = 2000 m peaks
at almost 85% for = = 4, !p = 200 m and Y = 0.135. Nonethe-
less, the worst performace is observed for the exact opposite of
the parameter space, namely !p = 100 m and Y = 0.01, where
less than 10% of the radar area is shadowed. This trend is most
likely linked to less steep wave facets and thus weaker radar re-
turn signals for lower steepness values. In fact, the results for
= ∈ {30, 300} indicate a sweet spot for Y = [0.04, 0.10] and
!? ≥ 150 m, as this region is attributed the lowest reconstruc-
tion errors. Here, the return signal strength is sufficiently strong,
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FIGURE 2: IMPACT OF THE CONTEXT SIZE ON THE RECONSTRUCTION ACCURACY EXPRESSED IN TERMS OF SSP. THE TRAINED MODELS
ARE EVALUATED ON ALL UNSEEN DATA, I.E. THE VALIDATION- AND THE TEST SET. THE RESULTS ARE GROUPED BY WAVE SPREADING,
RANGING FROM SHORT-CRESTED (n = 4) TO LONG-CRESTED (n = 300) SEA STATES. EACH RECONSTRUCTION IS EVALUATED OVER THE
WHOLE SPATIAL DOMAIN, AND THE CENTRAL (2000×2000) m. THE DISTRIBUTIONS OF THE RECONSTRUCTION ERRORS ARE VISUALIZED
WITH BOX- AND VIOLIN PLOTS. OUTLIERS ARE MARKED WITH A TRIANGLE.

while the wave height is small enough to minimize the effect of
shadowing and nonlinear wave effects. The overall decreased
reconstruction accuracy observed for case (ii) can be linked to
the radar blind zone. The relative share of the radar blind zone
on the area of the evaluated domain increases from c

4 % for case
(i) to c% for case (ii). Since there is no information available for
the radar blind zone, the model has to generalize over it, which is
expected to yield generally higher reconstruction errors.

Evaluation of best and worst reconstruction. In this sec-
tion, the best- and the worst reconstruction over all unseen data
are evaluated in detail. The best reconstruction is achieved for
the reconstruction of a sea state with !p = 200 m, Y = 0.055 and
= = 300. Figure 4 (a) shows the ground truth data from HOS
simulation, (b) shows the reconstruction of M14. Here, the area
of evaluation for case (ii), i.e., the central (2000×2000) m cutout,
is indicated by a dashed rectangle. The SSP value within the rect-
angle states the reconstruction error for case (ii), the SSP value
outside the rectangle states the reconstruction error for case (i),
i.e., over the whole domain. Figure 4 (c) shows the normalized
absolute error

NAE = �−1
S |y − ŷ|, (12)

which spatially resolves the reconstruction error over G and H.
Note that the NAE is a point-wise comparison between the ground
truth y and the prediction ŷ, i.e. the sea surface reconstruction.
The NAE, in constrast to the filtered SSP (cf. Section 3.1), inher-
ently implicitly compares the signals over the whole frequency
range. Therefore, the NAE is expected to exhibit some back-

ground noise, even for SSP = 0.
A qualitative comparison between the ground truth and the

prediction shows, that the ML model M14 provides faithful sea
surface reconstructions, cf. Figure 4 (a) and (b). At closer inspec-
tion, the prediction appears slightly smoother than the ground
truth. This loss of detail is attributed to the filtered SSP forc-
ing the model to attenuate the high frequency range. This is a
design choice, and can be adjusted by a looser low-pass filter
during training. The reconstruction error for case (i) quantifies
to SSP(i) = 0.082, and SSP(ii) = 0.095 for case (ii). The spa-
tially resolved error evaluation via NAE exhibits vertical patterns,
which are most pronounced around G = 0. Hence, the largest de-
viations between y and ŷ occur, when the radar beam is, within
some margin, parallel to the wave crests. In those cases, there are
no wave fronts or -throughs, which can reflect the radar beam,
and thus no backscattered information. Nonetheless, the ML ap-
proach manages to provide a faithful sea surface reconstruction
in those areas.

The worst reconstruction is provided for a sea state with
!p = 130 m, Y = 0.01 and = = 4, cf. Figure 5. Due to the wide
wave spreading and short wavelength, the sea surface is character-
ized by manifold small-scale patterns. The reconstruction error
for case (i) is SSP(i) = 0.211, the reconstruction error for case
(ii) is SSP(ii) = 0.238. At closer inspection, the reconstruction
exhibits a circle-shaped artifacts in the center, cf. Figure 5 (b).
The spatially resolved error confirms, that the main cause of er-
ror is the less accurate sea surface reconstruction within the radar
blind zone, i.e., all points {(G, H) |

√
G2 + H2 ≤ 200 m}, cf. Fig-

6 © 2025 by ASME
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ure 5 (c). Moreover, the NAE reveals isolated radial patterns,
which are least prominent within the upstream reconstruction,
assuming a mean wave heading in positive G-direction. Similar
to Figure 4 (c), these patterns most certainly originate from the
alignment of the wave crests and the radar beam, leading to miss-
ing backscattered information. However, the higher frequency
and radial alignment of the patterns in Figure 5 (c) indicate an-
other factor that shapes the error. With decreasing wavelength
!, all frequency components that contribute to the sea state un-
dergo a larger share of their respective period ) =

√
2c!g−1

during one radar revolution 3Crev. Paired with the overall more
complex spatio-temporal pattern for = = 4, this effect results in
a larger spatial mismatch between the individual circular sectors
that contribute to a single radar image. As mentioned at the end
of Section 2, the largest temporal gap in each synthetic radar
image exists along H = 0 for positive G, i.e., where the NAE
exhibits a pronounced radial line. This suggests, that the radial
lines observed in Figure 5 (c) are partly a product of the time
discretization, and should decrease with finer 3C. In a real-world
scenario, the radar image can be thought of as a spatio-temporal
spiral that is continuous in time, i.e., 3C → 0. This should in
theory reduce all radial error pattern except for the necessary
temporal gap of 3Crev, which was here located along H = 0 for
positive G.

5. CONCLUSIONS AND OUTLOOK
The presented study proposed a data-driven approach to the

2D sea surface reconstruction from synthetic X-band radar data.
The synthetic data were generated using the HOS method and a
geometric radar tool with additional system losses. The results
indicated sufficient reconstruction results across a wide parame-
ter space. The reconstruction error scaled with the overall shape
of the sea surface, which is defined by the spreading =. Long-
crested sea surfaces were reconstructed with higher fidelity than
short-crested sea surfaces. Moreover, a correlation between the
wave height, steered by the steepness Y, and the reconstruction
accuracy was identified. The area of the parameter space, where
the steepness was large enough to guarantee a low angle of inci-
dence between the surface normals and the radar beam, and low
enough to minimize the effect of shadowing, marked a sweet spot,
wherein the model reconstructions exhibited the best accuracy.

The presented study used a wide spectrum of characteristic
sea state parameters, and proposed a unifying data-driven so-
lution. In particular the spreading = significantly affected the
diversity of the data as it shapes the dominant wave patterns.
The ML model held a limited number of trainable parameters,
and thus could learn a finite number of patterns. A future study
may investigate, whether training on a reduced parameter space
can further improve the reconstruction results. In particular,
focussing the reduced parameter space around lower steepness
values Y will most certainly improve the predictions within the
calmer region of the parameter space, where marine operations
are usually performed.
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ŷ|/
H

S

x (m)

y
(m

)

FIGURE 5: SEA SURFACE RECONSTRUCTION RESULTS FOR SEA STATE WITH CHARACTERISTIC PARAMETERS Lp = 130 m, ε = 0.01, AND
n = 4. (a) SHOWS THE HOS SIMULATION WITH M = 4, WHICH SERVED AS GROUND TRUTH. (b) SHOWS THE RECONSTRUCTION FROM ML
MODEL M14. (c) SHOWS THE ABSOLUTE ERROR BETWEEN (a) AND (b) NORMALIZED BY THE SIGNIFICANT WAVE HEIGHT HS. THIS CASE
REPRESENTS THE WORST ML PREDICTION ON UNSEEN DATA.

[12] Ronneberger, O., Fischer, P. and Brox, T. U-Net: Con-
volutional Networks for Biomedical Image Segmentation.
Springer International Publishing (2015): pp. 234–241.
DOI 10.1007/978-3-319-24574-4_28.

[13] Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A. and Anandkumar, A. “Fourier Neu-
ral Operator for Parametric Partial Differential Equations.”
(2020). DOI 10.48550/ARXIV.2010.08895.

[14] Dommermuth, D. G. and Yue, D. K. P. “A high-order
spectral method for the study of nonlinear gravity waves.”
Journal of Fluid Mechanics Vol. 184 (1987): pp. 267–288.
DOI 10.1017/S002211208700288X.

[15] West, B. J., Brueckner, K. A., Janda, R. S., Milder, D. M. and
Milton, R. L. “A new numerical method for surface hydro-
dynamics.” Journal of Geophysical Research Vol. 92 No.
C11 (1987): p. 11803. DOI 10.1029/JC092iC11p11803.

[16] LeCun, Y., Bengio, Y. and Hinton, G. “Deep learning.”
Nature Vol. 521 No. 7553 (2015): pp. 436–444. DOI
10.1038/nature14539.

[17] Goodfellow, I., Bengio, Y. and Courville, A. Deep Learning.
MIT Press (2016). http://www.deeplearningbook.org.

[18] Lünser, H., Hartmann, M., Desmars, N., Behrendt, J., Hoff-
mann, N. and Klein, M. “The Influence of Characteristic
Sea State Parameters on the Accuracy of Irregular Wave
Field Simulations of Different Complexity.” Fluids Vol. 7
No. 7 (2022): p. 243. DOI 10.3390/fluids7070243.

[19] Sobey, R. J. Real Sea States: Advanced Short Course Notes.
Leichtweiß-Institut für Wasserbau, Technische Universität
Braunschweig (1999).

[20] Hasselmann, K., Barnett, T., Bouws, E., Carlson, H.,
Cartwright, D., Enke, K., Ewing, J., Gienapp, H., Hassel-
mann, D., Kruseman, P., Meerburg, A., Muller, P., Olbers,
D., Richter, K., Sell, W. and Walden, H. “Measurements of
wind-wave growth and swell decay during the Joint North
Sea Wave Project (JONSWAP).” Deut. Hydrogr. Z. Vol. 8
(1973): pp. 1–95.

[21] Bouws, E., Günther, H., Rosenthal, W. and Vincent, C. L.
“Similarity of the wind wave spectrum in finite depth
water: 1. Spectral form.” Journal of Geophysical Re-
search: Oceans Vol. 90 No. C1 (1985): pp. 975–986. DOI
10.1029/JC090iC01p00975.

[22] Mitsuyasu, Hisashi, Tasai, Fukuzo, Suhara, Toshiko,
Mizuno, Shinjiro, Ohkusu, Makoto, Honda, Tadao and Riki-
ishi, Kunio. “Observations of the Directional Spectrum of
Ocean Waves Using a Cloverleaf Buoy.” Journal of Physi-
cal Oceanography Vol. 5 No. 4 (1975): pp. 750–760. DOI
10.1175/1520-0485(1975)005<0750:ootdso>2.0.co;2.

[23] Dommermuth, D. “The initialization of nonlinear waves
using an adjustment scheme.” Wave Motion Vol. 32 (2000):
pp. 307–317. DOI 10.1016/S0165-2125(00)00047-0.

[24] Richards, Mark A. Fundamentals of radar signal process-
ing. McGraw-Hill electronic engineering, McGraw-Hill,
New York, NY u.a. (2005). Includes index.

[25] Seybold, J. S. Introduction to RF Propagation. Wiley
(2005). DOI 10.1002/0471743690.

[26] Salcedo-Sanz, S., Nieto Borge, J.C., Carro-Calvo, L.,
Cuadra, L., Hessner, K. and Alexandre, E. “Significant
wave height estimation using SVR algorithms and shad-
owing information from simulated and real measured X-
band radar images of the sea surface.” Ocean Engineer-
ing Vol. 101 (2015): pp. 244–253. DOI 10.1016/j.ocea-
neng.2015.04.041.

[27] Recommendation ITU-R P.525-3. “Calculation of free-
space attenuation.” Technical report no. Interna-
tional Telecommunications Union, Geneva, Switzerland.
2016. URL https://www.itu.int/dms_pubrec/itu-r/rec/p/
R-REC-P.525-3-201611-S!!PDF-E.pdf.

[28] Recommendation ITU-R P.835-6. “Reference stan-
dard athmospheres.” Technical report no. Interna-
tional Telecommunications Union, Geneva, Switzerland.
2017. URL https://www.itu.int/dms_pubrec/itu-r/rec/p/
R-REC-P.835-6-201712-S!!PDF-E.pdf.

9 © 2025 by ASME

https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.48550/ARXIV.2010.08895
https://doi.org/10.1017/S002211208700288X
https://doi.org/10.1029/JC092iC11p11803
https://doi.org/10.1038/nature14539
http://www.deeplearningbook.org
https://doi.org/10.3390/fluids7070243
https://doi.org/10.1029/JC090iC01p00975
https://doi.org/10.1175/1520-0485(1975)005%3C0750:ootdso%3E2.0.co;2
https://doi.org/10.1016/S0165-2125(00)00047-0
https://doi.org/10.1002/0471743690
https://doi.org/10.1016/j.oceaneng.2015.04.041
https://doi.org/10.1016/j.oceaneng.2015.04.041
https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.525-3-201611-S!!PDF-E.pdf
https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.525-3-201611-S!!PDF-E.pdf
https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.835-6-201712-S!!PDF-E.pdf
https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.835-6-201712-S!!PDF-E.pdf


[29] Recommendation ITU-R P.676-11. “Attentuation by
atmospheric gases.” Technical report no. Interna-
tional Telecommunications Union, Geneva, Switzerland.
2016. URL https://www.itu.int/dms_pubrec/itu-r/rec/p/
R-REC-P.676-11-201609-S!!PDF-E.pdf.

[30] He, K., Zhang, X., Ren, S. and Sun, J. “Deep Resid-
ual Learning for Image Recognition.” (2015). DOI
10.48550/ARXIV.1512.03385.

[31] Hendrycks, D. and Gimpel, K. “Gaussian Error Linear Units
(GELUs).” (2016). DOI 10.48550/ARXIV.1606.08415.

[32] Odena, A., Dumoulin, V. and Olah, C. “Deconvolution
and Checkerboard Artifacts.” (2016). DOI 10.23915/dis-
till.00003.

[33] Hewamalage, H., Ackermann, K. and Bergmeir, C.
“Forecast evaluation for data scientists: common pit-
falls and best practices.” Data Mining and Knowledge
Discovery Vol. 37 No. 2 (2022): pp. 788–832. DOI
10.1007/s10618-022-00894-5. URL http://dx.doi.org/10.
1007/s10618-022-00894-5.

[34] Perlin, M. and Bustamante, M. D. “A robust quanti-

tative comparison criterion of two signals based on the
Sobolev norm of their difference.” Journal of Engineer-
ing Mathematics Vol. 101 (2014): pp. 115–124. URL
https://api.semanticscholar.org/CorpusID:119299161.

[35] Wedler, M., Stender, M., Klein, M., Ehlers, S. and Hoff-
mann, N. “Surface similarity parameter: A new machine
learning loss metric for oscillatory spatio-temporal data.”
Neural Networks Vol. 156 (2022): pp. 123–134. DOI
10.1016/j.neunet.2022.09.023.

[36] Wedler, M., Stender, M., Klein, M. and Hoffmann, N. “Ma-
chine learning simulation of one-dimensional determinis-
tic water wave propagation.” Ocean Engineering Vol. 284
(2023): p. 115222. DOI 10.1016/j.oceaneng.2023.115222.

[37] Kingma, D. P. and Ba, J. “Adam: A Method for Stochastic
Optimization.” (2014). DOI 10.48550/ARXIV.1412.6980.

[38] Harris, F. J. “On the use of windows for harmonic anal-
ysis with the discrete Fourier transform.” Proceedings
of the IEEE Vol. 66 No. 1 (1978): pp. 51–83. DOI
10.1109/PROC.1978.10837.

10 © 2025 by ASME

https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.676-11-201609-S!!PDF-E.pdf
https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.676-11-201609-S!!PDF-E.pdf
https://doi.org/10.48550/ARXIV.1512.03385
https://doi.org/10.48550/ARXIV.1606.08415
https://doi.org/10.23915/distill.00003
https://doi.org/10.23915/distill.00003
https://doi.org/10.1007/s10618-022-00894-5
http://dx.doi.org/10.1007/s10618-022-00894-5
http://dx.doi.org/10.1007/s10618-022-00894-5
https://api.semanticscholar.org/CorpusID:119299161
https://doi.org/10.1016/j.neunet.2022.09.023
https://doi.org/10.1016/j.oceaneng.2023.115222
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.1109/PROC.1978.10837

	1 Introduction
	2 Data generation
	2.1 Nonlinear wave model
	2.2 X-band radar model

	3 Machine Learning framework
	3.1 Machine learning model
	3.2 Training process

	4 Results
	4.1 Study on the context size
	4.2 Evaluation of the ML model

	5 Conclusions and outlook

