elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Advancing semantic cloud segmentation in all-sky images: A semi-supervised learning approach with ceilometer-driven weak labels

Magiera, David und Fabel, Yann und Nouri, Bijan und Blum, Niklas und Schnaus, Dominik und Zarzalejo, L. F. (2025) Advancing semantic cloud segmentation in all-sky images: A semi-supervised learning approach with ceilometer-driven weak labels. Solar Energy, 300, Seite 113822. Elsevier. doi: 10.1016/j.solener.2025.113822. ISSN 0038-092X.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
4MB

Kurzfassung

Semantic segmentation of all-sky images provides high-resolution cloud coverage information useful for applications in meteorology, climatology, optical satellite downlink operations, and solar energy. While deep neural networks are highly effective for segmentation, their performance depends on large labeled datasets to learn complex visual features. To address this challenge, we introduce a semi-supervised learning approach for semantic cloud segmentation, combining advanced techniques such as ceilometer-driven weak labeling, pseudo-labeling, and consistency regularization. At the core of this approach is CloudMix, a novel data augmentation technique tailored specifically for cloud segmentation tasks. Our method begins with assigning weak labels to over 47,000 all-sky images using ceilometer data, which are combined with 616 manually labeled images to train a segmentation model. By employing pseudo-labeling and weak-to-strong consistency regularization, the model leverages both labeled and weakly labeled data effectively. The semi-supervised model surpasses a fully supervised baseline and a state-of-the-art model in pixel accuracy and mean Intersection over Union (mIoU) across validation, test and domain-shift test dataset. In particular, the detection of mid- and high-layer clouds improves significantly, with an increase in IoU of more than 7 and 9 percentage points on the test dataset. Furthermore, on the domain-shift test dataset, the semi-supervised model achieves over 20 and 27 percentage points higher mIoU than the baseline and state-of-the-art, respectively. These results underscore the robustness and generalization capabilities of the proposed method, making it a promising solution for cloud segmentation.

elib-URL des Eintrags:https://elib.dlr.de/216095/
Dokumentart:Zeitschriftenbeitrag
Titel:Advancing semantic cloud segmentation in all-sky images: A semi-supervised learning approach with ceilometer-driven weak labels
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Magiera, Davidmag.david12 (at) yahoo.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Fabel, YannYann.Fabel (at) dlr.dehttps://orcid.org/0000-0002-1892-5701NICHT SPEZIFIZIERT
Nouri, BijanBijan.Nouri (at) dlr.dehttps://orcid.org/0000-0002-9891-1974NICHT SPEZIFIZIERT
Blum, NiklasNiklas.Blum (at) dlr.dehttps://orcid.org/0000-0002-1541-7234NICHT SPEZIFIZIERT
Schnaus, Dominikdominik.schnaus (at) tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zarzalejo, L. F.lf.zarzalejo (at) ciemat.esNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:15 August 2025
Erschienen in:Solar Energy
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:300
DOI:10.1016/j.solener.2025.113822
Seitenbereich:Seite 113822
Verlag:Elsevier
ISSN:0038-092X
Status:veröffentlicht
Stichwörter:Semi-supervised learning Weak labels Semantic cloud segmentation All-sky imager Ceilometer
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Thermische Hochtemperaturtechnologien
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SW - Solar- und Windenergie
DLR - Teilgebiet (Projekt, Vorhaben):E - Condition Monitoring
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Solarforschung > Qualifizierung
Hinterlegt von: Fabel, Yann
Hinterlegt am:16 Okt 2025 10:08
Letzte Änderung:16 Okt 2025 10:08

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.