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 A B S T R A C T

Semantic segmentation of all-sky images provides high-resolution cloud coverage information useful for 
applications in meteorology, climatology, optical satellite downlink operations, and solar energy. While deep 
neural networks are highly effective for segmentation, their performance depends on large labeled datasets to 
learn complex visual features. To address this challenge, we introduce a semi-supervised learning approach for 
semantic cloud segmentation, combining advanced techniques such as ceilometer-driven weak labeling, pseudo-
labeling, and consistency regularization. At the core of this approach is CloudMix, a novel data augmentation 
technique tailored specifically for cloud segmentation tasks. Our method begins with assigning weak labels to 
over 47,000 all-sky images using ceilometer data, which are combined with 616 manually labeled images to 
train a segmentation model. By employing pseudo-labeling and weak-to-strong consistency regularization, the 
model leverages both labeled and weakly labeled data effectively. The semi-supervised model surpasses a fully 
supervised baseline and a state-of-the-art model in pixel accuracy and mean Intersection over Union (mIoU) 
across validation, test and domain-shift test dataset. In particular, the detection of mid- and high-layer clouds 
improves significantly, with an increase in IoU of more than 7 and 9 percentage points on the test dataset. 
Furthermore, on the domain-shift test dataset, the semi-supervised model achieves over 20 and 27 percentage 
points higher mIoU than the baseline and state-of-the-art, respectively. These results underscore the robustness 
and generalization capabilities of the proposed method, making it a promising solution for cloud segmentation.
1. Introduction

Detecting clouds in ground-based imagery is important for several 
applications, including meteorology and climatology [1] and support-
ing optical satellite downlink operations to optical ground stations [2,
3]. Solar energy is another increasingly important application of cloud 
detection. One of the challenges for the integration of solar energy 
is to manage the spatial and temporal variability of solar irradiance. 
Variations due to diurnal and seasonal changes can be easily accounted 
for and are predictable. Intra-hour and intra-minute variations in local 
solar irradiance are mostly caused by clouds [4,5], which are difficult 
to predict due to the complex dynamics of clouds. Especially large 
PV parks can benefit from reliable solar irradiance forecasts [6], for 
instance for ramp rate control [7,8], and can be optimized in terms of 
efficiency [9] and grid stability [10]. To assess the impact of clouds 
on solar irradiance, intra-hour forecasts, so-called solar nowcasts, are 
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required. Such nowcasting systems typically rely on ground-based ob-
servations and measurements, like all-sky imagers and radiometers to 
obtain high temporal and spatial resolutions [11]. Using stereographic 
approaches based on multiple all-sky imagers, a typical spatial coverage 
is in the range of 101 to 102 km2, covering the size of even very large 
PV parks [12,13]. In case of a large-scale network of all-sky imagers, 
several thousand square-kilometers can be covered [5], offering oppor-
tunities to anticipate short-term power production of entire regions. 
In such physics-based nowcasting systems, the underlying models are 
composed of a series of processing steps that describe the physical 
phenomena. These steps, typically include cloud detection, classifica-
tion, tracking, geolocation and transmittance estimation [14]. Semantic 
segmentation holds significant potential for enhancing cloud tracking, 
geolocation and the analysis of clouds radiative effects, especially under 
complex multi-layer conditions [15]. Cloud coverage information can 
also serve as an input feature in data-driven approaches [16]. Other 
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data-driven approaches train specific models based on the prevailing 
cloud types in the sky [17].

Therefore, the detection and classification of clouds in ground-based 
imagery has been a subject of increasing research activity over the 
past two decades. Historically, thresholding-based methods were early 
approaches to distinguish between clear-sky and cloud pixels. Since a 
clear atmosphere is dominated by Rayleigh scattering the sky appears 
blue while clouds, dominated by Mie scattering, appear white. Different 
thresholding methods have been proposed to distinguish cloudy- and 
clear sky-pixels in all-sky images, like a fixed threshold on the red-
blue ratio [18], the red-blue difference [19], or a combination of 
multiple thresholds [20]. Other methods include also the green color 
channel [21], transforming the image into other color spaces such as 
hue-saturation-intensity (HSI) and deciding based on saturation [22]. 
All these methods work under certain conditions, but their perfor-
mance is significantly compromised in presence of excessive saturation 
of the color channels and in turbid atmospheric conditions with a 
high concentration of aerosols in the atmosphere, due to shifts in 
the red-blue-green (RGB) ratio. Hence, over the past decade, machine 
learning-based methods have been applied to cloud detection. First, 
shallow fully-connected architectures were utilized [23], followed by 
deep convolutional neural networks (CNN) for cloud detection [24,25]. 
These methods showed superior accuracy while being less-prone to 
high atmospheric turbidities compared to the existing thresholding 
methods. However, all of these methods only distinguish between 
clear sky and cloudy pixels, but not between different cloud layers 
or cloud generas as defined by the World Meteorological Organization 
(WMO) [26]. The first approach to differentiate between the different 
cloud generas on pixel-level was proposed by [27]. A simplified clas-
sification, differentiating between the three cloud-layers was proposed 
by [28].

A major challenge with these methods is the requirement for a large 
number of pixel-level annotated images. The process of annotating all-
sky images at the pixel level is difficult due to ambiguities, which makes 
it extremely time consuming, and usually not feasible for large volumes 
due to economic and time constraints. This issue has been addressed by 
approaches like self-supervised learning [29], a form of unsupervised 
learning that does not require manually labeled data, but automati-
cally generates pseudo-labels for unlabeled data based on a pretext 
task. [28] used self-supervised learning for semantic cloud segmenta-
tion to pretrain a model on a large set of unlabeled all-sky images, 
followed by fine-tuning on a smaller set of pixel-level annotated all-sky 
images. Semi-supervised learning is another paradigm that leverages 
a small amount of labeled data and a large amount of unlabeled data 
simultaneously to effectively train deep neural networks. In computer 
vision, semi-supervised learning has been successfully applied to image 
classification [30,31] and semantic segmentation [32]. Self-training, a 
form of semi-supervised learning, has been applied to semantic cloud 
segmentation by [33].

In this work, we adopt the categorization of clouds into three layers 
(low, mid and high) as defined by the WMO [26], considering their 
distinct optical characteristics on average. We propose a ceilometer-
driven approach to assign weak labels to all-sky images on a large 
scale, to reduce the reliance on extensive human labeling. These weak 
labels, combined with a small set of labeled images, are leveraged for 
semi-supervised learning. Our method builds upon the weak-to-strong 
consistency regularization framework [31,32] and incorporates a novel 
data augmentation technique, CloudMix, specifically designed for se-
mantic cloud segmentation. To our knowledge, this work introduces the 
first approach to integrate ceilometer measurements directly into the 
learning process for purely camera-based semantic cloud segmentation. 
While [34] demonstrated that combining ceilometer data with camera 
imagery improves cloud classification accuracy compared to camera-
only methods, our approach offers a unique advantage. By using the 
ceilometer measurements for training purposes only, and not requiring 
2 
them for inference, our approach can be easily applied to any site that 
is equipped with a suitable all-sky imager on its own.

The remainder of this work is organized as follows: Section 2 
details our method for ceilometer-driven weak labeling, the resulting 
dataset, and labeled training, validation and test datasets. Section 3 
presents our proposed semi-supervised learning approach, including 
our novel data augmentation technique. In Section 4, we validate our 
methodology by comparing the segmentation performance of a semi-
supervised model trained with our approach to a fully-supervised model 
trained exclusively on labeled data and a state-of-the-art semantic cloud 
segmentation model on a validation and two test datasets. Finally, 
Section 5 concludes the work and provides a brief outlook.

2. Cloud image datasets

In this section we describe the data utilized for training, validation, 
and testing of our model. First, we present details on the hardware 
and image properties. Subsequently, we briefly introduce the labeled 
dataset employed for model training and validation. Thereafter, a 
comprehensive description of the generation of a novel weakly labeled 
dataset is presented. Finally, the test data will be described briefly.

2.1. Data acquisition

All camera and sensor data was acquired at CIEMAT’s (Spanish 
research institute: Centro de Investigaciones Energéticas, Medioambi-
entales 𝑦 Tecnológicas) Plataforma Solar de Almería (PSA) located in 
southern Spain at 37◦ 5′ 38′′ 𝑁 and 2◦ 21′ 32′′ W. Images were 
taken with all-sky imagers based on off-the-shelf surveillance cameras 
from Mobotix (models Q25, Q26, Q71). The Mobotix Q25 and Q26 
models capture images with a resolution of 4.35 megapixels, while 
the Mobotix Q71 model captures images with a resolution of 8.29 
megapixels. However, due to computational reasons, the images are 
cropped and resized to a square format of 512 × 512 pixels prior to 
being passed to the network. Furthermore, a camera mask is used to 
remove static objects from the surrounding site environment and very 
low elevation masks (< 10◦), as there is a lot of uncertainty in the 
annotation of these regions. The exposure time is set to a fixed value 
of 160 μs, and no solar occulting devices are installed. The cameras are 
configured to capture images in 30s intervals from sunrise to sunset, 
yielding approximately 1000 to 1600 images per day. The cloud base 
height measurements were acquired with a ceilometer manufactured 
by Lufft of type CHM15k-Nimbus.

2.2. Labeled dataset for model training

The labeled training data is taken from [28]. It comprises 770 
labeled images. Clouds are categorized as either low-, mid-, and high-
layer clouds adopted from the categorization by the WMO, combining 
the 10 main cloud genera into three cloud layers based on typical 
cloud base heights. The same dataset split into training and validation 
sets as in [28] is applied: 80% (616) training samples and 20% (154) 
validation samples.

2.3. Ceilometer-driven weak labeling of all-sky images

The generation of the weakly labeled dataset constituted the initial 
phase of the implementation of the proposed training method. The pri-
mary hypothesis is that the cloud base height measurements obtained 
from a ceilometer could be screened for conditions in which only a 
single cloud layer was present. A single-layer condition is defined as 
a period during which only clouds with cloud base heights from one 
of the three cloud layers are detected by the ceilometer. Based on the 
assumption that the majority of clouds captured by the all-sky imagers 
in close proximity to the ceilometer will be of the same cloud layer, 
weak labels can be assigned to the respective images on an image level.
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Table 1
The thresholds for the heuristics applied to the ceilometer mea-
surements to assign image-level weak labels to all-sky images. The 
height levels defined by the WMO [26] for mid-latitude regions like 
southern Spain are given in parentheses for reference.
 Cloud-layer min. threshold [m] max. threshold [m] 
 Low-layer 2000 (2400)  
 Mid-layer 3000 (1800) 6000 (8000)  
 High-layer 8000 (6000)  

Fig. 1. Ceilometer-driven weak labeling process. The first 5 h of the day were labeled 
as high-layer cloud conditions by the algorithm. Afterwards the heuristic was not 
fulfilled anymore as clouds with cloud base heights inside the high-layer and mid-layer 
thresholds are detected by the sliding window operation.

The temporal extent for the heuristic to be valid is defined as a 
sliding window operation looking four hours into the past and four 
hours into the future. The thresholds for each cloud layer, specified in 
Table  1, were adapted from the WMO [26] with a margin of safety with 
the objective of limiting the prevalence of ambiguous cloud conditions 
in the dataset. For instance, mid-layer clouds have typical cloud base 
heights ranging from 1800 to 8000 meters in mid-latitude regions such 
as southern Spain, according to the WMO. These thresholds exhibit 
a significant degree of overlap with the typical maximum cloud base 
heights for low-layer clouds (2400 m) and the typical minimum cloud 
base heights for high-layer clouds (8000 m). In order to reduce the 
degree of overlap, the maximum cloud base height for low-layer clouds 
was reduced to 2000 m, the interval for mid-layer clouds was narrowed 
to [3000 m, 6000 meters], and the minimum for high-layer clouds was 
increased to 8000 m. Furthermore, at least one cloud detection must 
occur within a temporal extent of ten minutes for the heuristic to be 
considered valid to reduce the number of images with minimal cloud 
coverage and noise of the ceilometer, as these images contribute little 
useful information to the training process. The weak labeling procedure 
for ceilometer measurements for one day is illustrated in Fig.  1.

Moreover, only images with sun elevation angles exceeding 20◦
and with Linke turbidity values below 4 were considered during the 
weak-labeling procedure. This was done to exclude images where the 
distinction between cloudy- and clear sky-pixels is too difficult or 
subject to a high degree of uncertainty. In addition, all parts of the 
images with elevation angles below 30 degrees were masked. This is 
because the ceilometer only provides a point measurement of the cloud 
base height vertically above the installation site. The masking thus 
reduces the field of view in the images and ensures that the distance of 
the captured clouds in the images to the location of the ceilometer is 
limited. Consequently, the assumption for the weak-labeling based on 
the ceilometer measurements still holds. An illustrative example image 
and its corresponding image-level weak label are presented in Fig.  2 
for each cloud layer. A qualitative assessment of weak label accuracy 
is provided in Appendix  A.

We applied the weak labeling algorithm to automatically label 
images from an all-sky imager installed in close proximity to the 
ceilometer from July 2019 until October 2021. The procedure yielded 
47595 weakly labeled images. Of these, 21341 images were weakly 
labeled as low-layer, 19885 images as high-layer, and 6396 images as 
3 
mid-layer, which constitutes the minority class in this case. Oversam-
pling was applied during training to neutralize the class imbalance. 
As captured in Fig.  3, the dataset encompasses a diverse range of 
atmospheric conditions containing a broad variety of sun elevation 
angles and atmospheric turbidities.

2.4. Test datasets

We labeled a total of 48 additional images to enable a comparison 
between the proposed method, its fully-supervised baseline, and a state-
of-the-art model as described in [28]. Of these, 36 test images were 
captured using Mobotix Q25/Q26 camera models, which contain the 
same CMOS chip as the camera used for acquiring the training data. 
Additionally, 12 images were labeled from the Mobotix Q71 camera 
model to assess the generalization capabilities under changing camera 
hardware, representing a domain-shift scenario. For the remainder of 
this work, the 36 images will be referred to as the test dataset, while 
the 12 images will be referred to as the domain-shift test dataset. The 
images were selected from the years 2021 and 2023, with an evenly 
distributed selection across months to account for seasonal variations.

Fig.  4 shows the pixel-level class distributions and the image-
level cloud condition distributions of the training, validation, test and 
domain-shift test datasets. In the training and validation datasets, a 
higher proportion of pixels belong to the sky and low-layer classes and 
a lower proportion of pixels belong to the mid- and high-layer classes 
compared to the test and domain-shift test datasets. Also, the two test 
datasets contain a larger share of all-sky images with multi-layer cloud 
conditions compared to the training and validation datasets. This makes 
the test datasets more challenging for semantic cloud segmentation. 
First, because mid- and high-layer clouds are typically more difficult 
to detect accurately than clear-sky or low-layer clouds [28]. Second, 
multi-layer cloud conditions increase the complexity of the scenery and 
make it difficult to clearly distinguish the cloud boundaries.

3. Proposed semi-supervised learning method

In the following section, we present our method for training a 
semantic cloud segmentation model with labeled and weakly labeled 
all-sky images. After a brief general overview of our training archi-
tecture, we describe the design of the deployed pseudo-labeling and 
consistency regularization strategies in detail.

3.1. General overview

The architecture of our semi-supervised learning method is based 
on a student–teacher architecture, as illustrated in Fig.  5. Both models 
are semantic cloud segmentation models with an identical CNN archi-
tecture. Prior to the semi-supervised learning procedure, the teacher 
model is trained exclusively on the labeled training dataset with fully 
supervised learning. Next, the student model is trained on the labeled 
training images and the weakly labeled images, and is guided by the 
teacher model’s predictions on the weakly labeled images. The weights 
of the teacher model are kept constant during the optimization of the 
student model.

From a high-level perspective, the semi-supervised training of the 
student model can be viewed as two independent streams of image 
processing. In the first stream, the labeled images are processed and in 
the second stream, the weakly labeled images. A separate loss function 
is calculated for each stream. For the labeled data, model optimization 
is performed by calculating the standard cross-entropy loss, denoted 
as L𝐿, which is the same loss function utilized to train the teacher 
model beforehand. The weakly labeled images are utilized to calculate 
an additional consistency loss, denoted as L𝐶 . The consistency loss is 
calculated based on generated pseudo-labels. Those are obtained from 
the predictions of the teacher model that are combined with the weak 
labels derived from the ceilometer data. Both streams calculate their 
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Fig. 2. One example for each image-level weak label from the generated weakly labeled dataset.

Fig. 3. Data distributions of the generated weakly labeled dataset. From left to right: By weak label, sun elevation angle and linke turbidity.

Fig. 4. Comparison of the data distributions of the validation and test datasets. Top: By class labels on the pixel-level. Bottom: By cloud conditions on the image-level.
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Fig. 5. A high-level overview of the training architecture of our proposed semi-supervised learning approach for semantic cloud segmentation.
respective losses independently, but are combined into a total loss 
function, denoted as 𝐿𝑡𝑜𝑡𝑎𝑙, for a joint model optimization, as defined 
in Eq.  (1). 
𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝐿 + 𝜆 ⋅ 𝐿𝐶 (1)

The hyper-parameter 𝜆, referred to as the consistency weight, deter-
mines the extent to which the optimization of the labeled data loss 𝐿𝐿
is constrained by the consistency loss 𝐿𝐶 . In this work, we set 𝜆 with a 
fixed value throughout the training process for reasons of stability and 
simplicity.

3.2. Weak label enhanced pseudo-labeling

Pseudo-labeling is a common method in semi-supervised learning, 
where artificial labels, or pseudo-labels, are generated from unlabeled 
data or, in this case, weakly labeled data. We generate the pseudo-labels 
by fusing the predicted segmentation masks of the teacher model with 
the image-level weak label.

First, images from our weakly labeled dataset, denoted as x𝑤, are 
passed to the teacher model to make predictions, denoted as z𝑤. Next, 
pixel-wise classes are determined by computing the 𝑎𝑟𝑔𝑚𝑎𝑥 function, 
as defined in Eq.  (2). Then, all pixels corresponding to one of the 
three cloud layers are overwritten with the image-level weak label 
representing the cloud layer observed by the ceilometer. The remaining 
pixels classified as clear sky remain the same. Furthermore, pixel-
wise confidences are obtained from the prediction z𝑤 of the teacher 
model using the softmax regularization, as defined in Eq.  (3), which 
yields a probability distribution over the possible classes for each 
pixel. The specific pixel-wise confidence weight, denoted as w𝑝𝑠𝑒𝑢𝑑𝑜, 
is derived by indexing the probability distribution with the identified 
class in the pseudo-label for the specific pixel, as defined in Eq.  (4). 
These confidence weights serve to quantify the consensus between the 
prediction of the teacher model and the image-level weak label. In 
other words, they provide a measure of alignment between the labeled 
training images and the specific image-level weak label, determined 
through the cloud base height measurements of the ceilometer. This 
process is depicted in Fig.  6. In this particular instance, pixels predicted 
by the teacher model as high-layer clouds (green) do not align with the 
image-level weak label (mid-layer). Consequently, these pixels exhibit 
confidence weights approaching zero, as indicated by the blueish hue in 
the confidence weighted mask. These confidence weights are utilized to 
mitigate the influence of pixels with a high degree of uncertainty in the 
pseudo-label during the calculation of the consistency loss. A detailed 
definition of the calculation of the consistency loss will be provided 
towards the end of this section. 
𝐲(𝐳) = argmax(𝐳) (2)
𝐢

5 
𝜎𝑆𝑀 (𝐳)𝑖 =
𝑒𝑧𝑖

∑𝐶
𝑗=1 𝑒

𝑧𝑗
, 𝑖 = 1...𝐶 (3)

𝐰𝑝𝑠𝑒𝑢𝑑𝑜(𝐳) = 𝜎𝑆𝑀 (𝐳)𝑖=𝑦𝑝𝑠𝑒𝑢𝑑𝑜 (4)

Pseudo-labeling alone is reported to perform poorly, especially on 
small amounts of labeled data. This is due to over-fitting to noise in the 
pseudo-labels and confirmation bias as addressed by [35]. Typically, 
the generated pseudo-labels are used for consistency regularization, 
which is also done in this approach.

3.3. Consistency regularization

Consistency regularization is a key technique in semi-supervised 
learning to leverage unlabeled data and weakly labeled data. The main 
idea of consistency regularization is to enforce the same predictions 
for similar perturbed views of the same input image. Our method 
uses a weak-to-strong consistency regularization framework popular-
ized by [31] for semi-supervised image classification and recently trans-
ferred to the semi-supervised semantic segmentation domain by [32].

3.3.1. Weak-to-strong consistency regularization
For our case of semantic cloud segmentation, the weakly labeled im-

ages x𝑤 are first transformed using weak data augmentations to obtain 
weakly augmented views x𝑤𝑤𝑒𝑎𝑘. Weak augmentations in the context of 
semantic cloud segmentation are simple transforms as horizontal and 
vertical flipping, image rotations and minor resizing of the input image. 
These transformations increase the variability of input without chang-
ing the semantic content of the image, specifically its ground truth 
segmentation mask. Then, the weakly augmented images x𝑤𝑤𝑒𝑎𝑘 are 
augmented a second time with strong data augmentations, resulting in 
strongly augmented views x𝑤𝑠𝑡𝑟𝑜𝑛𝑔 . In the context of semantic cloud seg-
mentation, strong data augmentations are transformations that change 
the image content more substantially, such as color jittering, including 
changes in contrast, brightness, and saturation, or Gaussian blurring. 
In addition to color jittering and Gaussian blurring, we developed and 
deployed a third strong augmentation technique specific to semantic 
cloud segmentation, called CloudMix, for even stronger perturbation on 
an image level.

3.3.2. CloudMix data augmentation
Semi-supervised semantic segmentation represents a more challeng-

ing problem than semi-supervised image classification, as discussed 
in [36]. From a semantic segmentation perspective, color jittering 
and Gaussian blurring are often insufficient for augmenting images 
for effective consistency regularization. Hence, semi-supervised seman-
tic segmentation requires domain specific strong data augmentation. 



D. Magiera et al. Solar Energy 300 (2025) 113822 
Fig. 6. The workflow of pseudo-label generation using a teacher model and image-level weak labels. (Colormap pseudo-label mask: blue: sky; red: low-layer; yellow: mid-layer; 
green: high-layer).
Fig. 7. Mixing of two images and their respective pseudo-label masks using the proposed CloudMix data augmentation technique. (Colormap mixed pseudo-label: blue: sky; red: 
low-layer; yellow: mid-layer; green: high-layer).
 

Table 2
Class hierachy utilized for CloudMix data augmen-
tation.
 Class hierarchy Class label 
 1 clear-sky  
 2 high-layer  
 3 mid-layer  
 4 low-layer  

A commonly used strong data augmentation technique for semantic 
segmentation is CutMix proposed by [37]. The CutMix augmentation 
technique involves cutting out parts of an image and inserting it 
into another image. In the same way, the respective pixel-level labels 
are combined into a new segmentation mask. However, the original 
approach, only overlays rectangular regions of arbitrary size, creating 
hard cuts at the boundaries and resulting in unnatural cloud sceneries.

Inspired by this, we propose a new data augmentation technique 
called CloudMix. In contrast to the original approach, CutMix, Cloud-
Mix respects the cloud shape observed in the images that are blended. 
Additionally, since our clouds layers correspond to different cloud base 
heights, a physically correct order can be obtained when blending 
image pairs. This approach ensures the preservation of the original 
cloud boundaries and yields a more ‘‘natural’’ mixed image. This is 
achieved by applying the hierarchy defined in Table  2. Formally the 
process can be defined as follows: Two images can be mixed by adopting 
the pixel and its label with the higher class-hierarchy from both images for 
each pixel position respectively. To illustrate, a mid-layer pixel is expected 
to overlay clear-sky and high-layer pixels, but would be expected to be 
overlaid by low-layer pixels. The CloudMix process for one image pair 
with low-layer and mid-layer clouds is depicted in Fig.  7. In instances 
where two images with an identical cloud type are to be combined, the 
pixels of the initial image are accorded precedence during the process.

In this study, CloudMix was applied alongside color jittering and 
Gaussian blurring to achieve sufficient data augmentation for weak-to-
strong consistency regularization.

3.3.3. Confidence weighted consistency loss
We conclude the weak-to-strong consistency framework by defining 

the consistency loss function. The weakly augmented images x  are 
𝑤𝑤𝑒𝑎𝑘

6 
utilized to generate pseudo-labels y𝑝𝑠𝑒𝑢𝑑𝑜 and the respective confidence 
weights w𝑝𝑠𝑒𝑢𝑑𝑜 by fusing the predictions of the teacher model with the 
image-level weak labels as stated by our pseudo-labeling strategy. The 
student model in contrast predicts on the strongly augmented images, 
denoted by x𝑤𝑠𝑡𝑟𝑜𝑛𝑔 . The predictions of the student z𝑤𝑠𝑡𝑟𝑜𝑛𝑔 , the generate 
pseudo-labels y𝑝𝑠𝑒𝑢𝑑𝑜, and the confidence weights w𝑝𝑠𝑒𝑢𝑑𝑜, are used to 
calculate a confidence weighted cross entropy loss, also denoted as 
consistency loss, defined in Eq.  (5). 

𝐿𝐶 (𝐲𝑝𝑠𝑒𝑢𝑑𝑜,𝐰𝑝𝑠𝑒𝑢𝑑𝑜, 𝐳𝑤𝑠𝑡𝑟𝑜𝑛𝑔) = − 1
𝑁

𝑁
∑

𝑖=1

𝐶
∑

𝑗=1
𝑤𝑖 ⋅ 𝑦𝑖𝑗 log(𝜎𝑆𝑀 (𝑧𝑖𝑗 )) (5)

4. Experiments

In this section, we evaluate the effectiveness of our proposed method
for semantic cloud segmentation by comparing the segmentation per-
formance of three models:

1. A Semi-supervised model trained with our method on the labeled 
dataset (616 images) and weakly labeled dataset (47595 images) 
presented in Section 2.

2. A Fully-supervised model trained exclusively on the labeled 
dataset (616 images) as a baseline.

3. A State-of-the-art semantic cloud segmentation model from [28], 
fine-tuned on the same labeled dataset (616 images). This model 
will be referred to as Fabel 2022 model for the rest of this 
section.

Segmentation is evaluated on semantic segmentation metrics, such 
as pixel accuracy and Intersection over Union (IoU), as described in 
Section 4.3. In addition to the validation dataset (154 images), we also 
evaluate the models on the test dataset (36 images) and domain-shift 
test dataset (12 images), presented in Section 2.

4.1. Model training and selection

All models were trained on a single Nvidia RTX A5000 GPU with 
16 GB GPU RAM on a Dell Precision 7560 laptop and implemented in 
PyTorch Lightning [38] a lightweight wrapper for PyTorch [39].
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Table 3
Hyperparameter selection for the training of deep cloud segmentation models.
 Hyper-
parameter

Fully-
supervised

Semi-
supervised

Fabel 2022  

 Input size 512 × 512 512 × 512 512 × 512  
 Arch., backbone DeepLabv3+, 

ResNet50
DeepLabv3+, 
ResNet50

U-Net, ResNet34  

 Initialization ImageNet ImageNet Self-supervised  
 Epochs 40 100 2 × 20  
 Batch size 4 8, 56 (weakly 

labeled)
4  

 Training samples 616 616, 47595 
(weakly labeled)

616  

 Optimizer AdamW AdamW Adam  
 Learning rate 1e−4 5e−4 1e−3, 1e−4  
 Scheduler OneCycleLR OneCycleLR OneCycleLR  
 Normalization 
mean

[0.1662, 0.1688, 
0.1571]

[0.1662, 0.1688, 
0.1571]

[0.1739, 0.1696, 
0.1715]

 

 Normalization 
std

[0.1811, 0.1732, 
0.1536]

[0.1811, 0.1732, 
0.1536]

[0.1376, 0.1297, 
0.1175]

 

 Consistency 
weight 𝜆

– 2 –  

 Training time 20 min 7 h –  
 Data 
augmentations

Weak Weak and strong Horizontal and 
vertical flipping

 

4.1.1. Hyperparameter optimization and model selection
During the development stage of our models, hyperparameters such 

as batch sizes and the optimal number of epochs were tuned experi-
mentally. Suitable learning rates were determined using the learning 
rate finder proposed by [40] and were dynamically scheduled using 
the one-cycle policy as described in [41]. The model weights were 
updated using the AdamW [42] optimizer, with a default weight decay 
of 1 × 10−2. The models utilized for the final evaluation were selected 
based on the model checkpoints with the best mean Intersection over 
Union (mIoU) score on the validation dataset.

4.1.2. Fully-supervised baseline model
The model architecture is a convolutional neural network (CNN) 

with encoder–decoder structure based on the DeepLabv3+ [43] ar-
chitecture with a ResNet50 [44] encoder, which is initialized with 
ImageNet [45] weights before training. Training is conducted for 40 
epochs with a batch size of 4 and a learning rate of 1 × 10−4. Data 
augmentation includes flipping, rotating, and random cropping, as 
detailed in Table  4. Training is repeated three times to account for 
random fluctuations. Each training run takes approximately 20 min.

4.1.3. Semi-supervised model
The model architecture and initialization are identical to those 

employed for the fully-supervised baseline model, thereby facilitating 
a fair comparison between the two models. The semi-supervised model 
is trained for 100 epochs with a batch size of 8 and a learning rate of 
5 × 10−4. The training process can be extended over a greater number 
of epochs in comparison to the training of the fully-supervised counter-
part. This is due to the substantial quantity of weakly labeled images, 
which prevents the model from overfitting to the labeled training 
images. The same weak augmentations (see Table  4) are applied as 
for the baseline model, while additionally strong augmentations are 
used. In addition to color jittering and Gaussian blurring, we apply 
our novel CloudMix augmentation (see Table  5). Each batch contains 7 
weakly labeled samples and 1 human-labeled sample, ensuring consis-
tent guidance from human-labeled data during optimization. A greater 
proportion of weakly labeled samples is included in each batch to 
enhance consistency loss computation, improving gradient estimation 
and stabilizing training. To accommodate even more weakly labeled 
7 
Table 4
Utilized weak data augmentation techniques.
 Augmentation Intensity Probability 
 RandomResizedCrop +/−10% 0.5  
 RandomRotation [0◦, 360◦] 1.0  
 RandomHorizontalFlip 0.5  
 RandomVerticalFlip 0.5  

Table 5
Utilized strong data augmentation techniques.
 Augmentation Intensity Probability 
 ColorJitter +/−10% brightness,

contrast, saturation
0.8  

 GaussianBlur 𝜎 ∈ (0.75, 1.25) 0.5  
 CloudMix 1.0  

samples per optimization step, gradient accumulation [46] is set to 8, 
resulting in an effective batch size of 64, comprising 56 weakly labeled 
and 8 human-labeled images. The consistency weight (𝜆) is fixed at 2 
for simplicity. The fully-supervised baseline model is utilized as the 
teacher model for pseudo-label generation during the training of the 
semi-supervised model. Training takes approximately 7 h (see Table  3).

4.2. Fabel 2022 model

The architecture is based on a U-Net [47] with a ResNet34 [44] 
encoder. The model was pre-trained on a clustering-based pretext 
task [29] with self-supervised learning on 286477 all-sky images and 
fine-tuned on the labeled dataset of 616 images, presented in Section 2. 
It should be noted that the model training was not conducted as part 
of this work; rather, the model was utilized as a pre-trained model. For 
further implementation and training details, please refer to the original 
work of [28].

4.3. Metrics

The overall semantic segmentation performance is evaluated using 
pixel accuracy and mean Intersection over Union (mIoU). Pixel accu-
racy calculates the number of correctly predicted pixels divided by the 
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Table 6
Accuracy and mIoU on the validation and test datasets.
 Metric Validation dataset Test dataset
 Fabel

2022
Baseline SSL Fabel

2022
Baseline SSL  

 Accuracy 84.28 88.20 88.67 68.27 67.63 70.92 
 mIoU 74.71 79.80 80.52 53.07 52.80 56.84 

number of all pixels and is defined as 

𝑝𝑖𝑥𝑒𝑙𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑𝐶

𝑐=1 𝑇𝑃𝑐

𝑁
(6)

where 𝐶 denotes the number of classes, 𝑇𝑃𝑐 the number of true 
positives for the respective class 𝑐 and 𝑁 the total number of pixels. 
The mIoU assesses the overlapping area of predicted and groundtruth 
pixels by their union, defined as 

𝑚𝐼𝑜𝑈 = 1
𝑁

𝐶
∑

𝑐=1
𝐼𝑜𝑈𝑐 ⋅𝑤𝑐 (7)

where 𝐼𝑜𝑈𝑐 denotes the Intersection over Union (IoU) for the class 𝑐
and 𝑤𝑐 = 𝑇𝑃𝑐 + 𝐹𝑁𝑐 the support of the respective class calculated as 
the sum of true positives and false negatives for the respective class. 
The 𝐼𝑜𝑈𝑐 for a specific class is defined as 

𝐼𝑜𝑈𝑐 =
𝑇𝑃𝑐

𝑇𝑃𝑐 + 𝐹𝑃𝑐 + 𝐹𝑁𝑐
(8)

where 𝑇𝑃𝑐 are the true positives, 𝐹𝑃𝑐 the false positives and 𝐹𝑁𝑐 the 
false negatives for class 𝑐. Furthermore, we also evaluate the precision 
and recall for each class. The precision indicates the proportion of true 
positives predictions among all positive predictions, defined as 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐 =
𝑇𝑃𝑐

𝑇𝑃𝑐 + 𝐹𝑃𝑐
(9)

The recall quantifies the proportion of true positives to the total ground 
truth positives, defined as 

𝑟𝑒𝑐𝑎𝑙𝑙𝑐 =
𝑇𝑃𝑐

𝑇𝑃𝑐 + 𝐹𝑁𝑐
(10)

The border part of the all-sky images, indicating masked image areas 
(see Section 2.1), is neglected for the calculation of our metrics as this 
would distort the results.

4.4. Results

We compare the semantic segmentation results of the three models 
on the validation and test datasets. First, we examine the results for 
the multi-layer segmentation, followed by an examination of the binary 
segmentation results.

4.4.1. Multi-layer segmentation
The semi-supervised model was the best model on the validation set 

with an accuracy of 88.67% and mIoU of 80.52% as presented in Table 
6. It slightly outperformed the fully-supervised baseline, with less than 
one percentage point difference in both metrics. In contrast, the gap to 
the Fabel 2022 model was more pronounced, showing a difference of 
4.39% in accuracy and 5.81% in mIoU.

Similarly, the semi-supervised model was found to perform best 
on the test dataset, achieving an accuracy of 70.92% and an mIoU of 
56.84%. It surpassed the Fabel 2022 model by 2.6% in accuracy and 
3.7% in mIoU, and showed even slightly greater improvements over 
the fully-supervised model. Notably, while the fully-supervised baseline 
achieves higher accuracy and mIoU than the Fabel 2022 model on the 
validation dataset, it is outperformed by the Fabel 2022 model on the 
test dataset. This could be caused by overfitting of the fully-supervised 
model to the specific cloud conditions in the validation dataset, as 
the model was selected based on the best mIoU score on this specific 
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Table 7
Classwise IoU, precision and recall on the test dataset.
 Metric Class Fabel 2022 Baseline SSL  
 IoU Clear-sky 79.34 79.56 80.13 
 IoU Low-layer 55.17 52.78 49.32 
 IoU Mid-layer 34.24 29.58 37.41 
 IoU High-layer 38.22 42.75 52.63 
 Recall Clear-sky 94.63 94.96 89.28 
 Recall Low-layer 77.50 75.27 64.33 
 Recall Mid-layer 55.09 46.98 57.08 
 Recall High-layer 43.34 49.31 66.77 
 Precision Clear-sky 83.08 83.07 88.67 
 Precision Low-layer 65.69 63.85 67.87 
 Precision Mid-layer 47.50 44.39 52.05 
 Precision High-layer 76.36 76.26 71.31 

dataset. Nevertheless, it seems to generalize poorly to unseen data, 
which explains the lower mIoU on the test dataset and highlights the 
downsides of fully-supervised learning.

The significant drop in accuracy and mIoU, by over 17 and 23 
percentage points respectively, between the validation and test datasets 
can be attributed to two main factors. First, as discussed in Section 2.4 
and shown in Fig.  4, the relative frequency of the challenging mid- 
and high-layer cloud classes is substantially higher in the test set 
compared to the validation set. Second, the test dataset contains a 
significant number of images with multi-layer cloud conditions, which 
are particularly challenging for the models to predict accurately.

In terms of classwise IoU, the semi-supervised model achieved 
the best results on the test dataset across all classes except the low-
layer class as shown in Table  7. The most significant improvements 
were observed for the mid- and high-layer classes, previously iden-
tified as the most challenging to predict by [28]. In contrast, the 
Fabel 2022 and baseline models demonstrated higher recall for the 
clear-sky and low-layer classes but exhibited lower precision compared 
to the semi-supervised model, indicating that while they identified 
more true positives for these classes, they also produced more false 
positives. This difference may suggest that the semi-supervised model 
effectively mitigates bias toward the majority classes in the labeled 
training dataset (clear-sky and low-layer), a common challenge in im-
balanced data scenarios, as discussed by [48]. Despite these advances, 
mid-layer clouds remain the most difficult to predict due to optical 
similarities with low- and high-layer clouds in many cases. While weak 
labeling and semi-supervised learning techniques have shown some 
improvement, challenges remain.

Next, we analyze the confusion matrices of the three models on the 
test dataset, as shown in Fig.  8. The majority of misclassifications for 
all models occured between adjacent cloud layers, such as between 
low-layer and mid-layer clouds or between mid-layer and high-layer 
clouds. In addition, some high-layer clouds were misclassified as clear 
sky and vice versa by all models. The semi-supervised model improved 
in the detection of mid-layer clouds, showing less confusion with low-
layer clouds, but at the cost of more misclassification of low-layer 
clouds as mid-layer clouds, compared to the baseline and Fabel 2022 
models. Overall, more high-layer cloud pixels were correctly predicted 
by the semi-supervised model, as less confusion occurred with the mid-
layer and clear-sky classes. However, clear sky pixels are also more 
likely to be misclassified as high-level clouds, compared to the baseline 
and Fabel 2022 models. This strengthens the argument, that the semi-
supervised model may be less biased towards the majority classes in the 
training data than the models fine-tuned exclusively on labeled all-sky 
images, as mentioned in the previous paragraph. For detailed results on 
the validation dataset, including the corresponding confusion matrices 
and classwise metrics, please refer to Appendix  B.

Examining segmentation examples, as shown in Fig.  9, provides 
insight into the qualitative improvements in cloud segmentation and 
highlights the types of scenes that remain particularly challenging. In 
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Fig. 8. Confusion matrices on the test dataset.
Table 8
Accuracy and mIoU of binary segmentation on the validation and test datasets.
 Metric Validation Dataset Test Dataset
 Fabel

2022
Baseline SSL Fabel

2022
Baseline SSL  

 Accuracy 94.49 94.44 94.63 92.30 92.24 93.07 
 mIoU 89.74 89.55 89.82 86.19 86.22 87.34 

example (a), the semi-supervised model largely succeeded in correctly 
classifying fine cirrus clouds in the high-layer, whereas the Fabel 2022 
and baseline models misclassified these as mid-layer or even low-layer 
clouds. However, the predictions do not fully align with the ground 
truth, particularly in regions where the clouds are barely visible, posing 
significant challenges for both prediction and annotation. Similarly, 
example (b) illustrates a case where mid-layer clouds were correctly 
identified only by the semi-supervised model. Examples (c) and (d) 
highlight the complexity of scenes with multiple cloud layers in a 
single all-sky image. Particularly in example (d), where stratus-like 
9 
overcasts coexist with low-layer clouds, distinguishing between cloud 
layers remains a major challenge due to reduced illumination and 
contrast.

4.4.2. Binary segmentation
Next, we compare the three models for binary segmentation on 

the validation and test datasets. As presented in Table  8, the semi-
supervised model demonstrates minor improvements over both the 
Fabel 2022 and baseline models on both datasets. On the validation 
dataset, the differences in accuracy and mIoU were minimal, with 
margins of less than one percentage point. On the test dataset, the 
semi-supervised model achieved approximately one percentage point 
higher accuracy and mIoU than the Fabel 2022 and baseline models, 
indicating that the proposed method is also advantageous for binary 
segmentation. It is important to note that all three models perform well 
on the binary segmentation task with pixel accuracy over 94% on the 
validation dataset and over 92% on the test dataset. Most confusions 
come from thin high-layer clouds with clear-sky, which are often not 
easy to distinguish even for human experts.
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Fig. 9. Examples of all-sky images, ground-truth masks and the predictions of the evaluated models of the test dataset with the corresponding prediction accuracy and mIoU. 
Examples (a) and (b) represent cloud conditions, where our method leads to improvements. Examples (c) and (d) represent the complexity of scenery with multiple cloud layers in 
a single all-sky image. The images have been adjusted in brightness and contrast for readability. (Colormap ground truth masks and predictions: blue: sky; red: low-layer; yellow: 
mid-layer; green: high-layer).
Table 9
Accuracy and mIoU on the 12 all-sky images from the domain-shift 
test dataset.
 Metric Fabel 2022 Baseline SSL  
 Accuracy 52.29 62.11 77.70 
 mIoU 37.82 45.24 65.30 

4.4.3. Multi-layer segmentation under domain-shift
Finally, we compare the segmentation quality of the three mod-

els under domain-shift conditions. To this end, accuracy and mIoU 
were evaluated on the 12 all-sky images of the domain-shift test 
dataset, which contains images captured using a different camera 
model (Mobotix Q71) than the training data (Mobotix Q25/Q26). As 
shown in Table  9, the semi-supervised model significantly outper-
formed both the baseline and the Fabel 2022 models in mIoU, with 
improvements of over 20 and 27 percentage points, respectively. While 
the performance of the semi-supervised model remained compara-
ble to its results on the in-domain test dataset, the Fabel 2022 and 
baseline models experienced substantial degradation under domain-
shift conditions. This suggests that our method can lead to improved 
generalization capabilities when faced with changes in camera hard-
ware. However, further investigation is required to draw definitive 
conclusions, as a dataset of 12 images is limited in covering very 
versatile cloud conditions.

5. Conclusions

In this work, we presented a novel semi-supervised learning ap-
proach for semantic cloud segmentation, developed to address the 
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challenge imposed by limited labeled data. To this end, we incorpo-
rated advanced training techniques, including ceilometer-driven weak 
labeling of all-sky images, pseudo-labeling, and weak-to-strong consis-
tency regularization. As part of this work, over 47,000 all-sky images 
were assigned with image-level weak labels using ceilometer data. 
Furthermore, we introduced CloudMix, a data augmentation technique 
specifically tailored for semantic cloud segmentation, which mixes 
all-sky image pairs and their corresponding ground truth masks. To 
validate our method, we compared the segmentation results of our 
novel semi-supervised model against a baseline model trained in a fully-
supervised manner and a state-of-the-art model from the literature. 
These comparisons were conducted on a validation dataset compris-
ing 154 all-sky images, a test dataset containing 36 images, and a 
domain-shift test dataset from a different camera model containing 12 
images. Consistently, our semi-supervised model demonstrated superior 
performance across all datasets, particularly in terms of pixel accu-
racy and IoU. Notably, the detection of underrepresented cloud types 
improved, such as mid- and high-layer clouds. Most importantly, the 
semi-supervised model maintained stable segmentation quality under 
domain shift conditions, whereas the performance of the other models 
declined significantly. These results highlight the enhanced robustness 
and generalization capabilities of our method, making it a more suitable 
option for real-world deployment across diverse imaging devices and 
environments.

However, differentiating between cloud types remains a significant 
challenge. Particularly mid-layer clouds are often confused with low- 
or high-layer clouds, due optical similarities in many cases. This vi-
sual ambiguity not only impacts classification performance but also 
complicates the creation of accurate ground-truth annotations. Similar 
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Fig. A.1. Examples of weak label generation time intervals demonstrating the effectiveness of ceilometer-driven weak labeling. (a) shows images at the beginning of weakly labeled 
time intervals. (b) shows images taken between the beginning and end of the weakly labeled time intervals. (c) shows images at the end of the weakly labeled time intervals.
 

difficulties can be observed in complex multi-layer conditions. This is 
especially the case in overcast scenarios where reduced illumination 
and missing cloud boundaries further hinder both segmentation accu-
racy and annotation reliability. To address these challenges, further 
research on ground-based cloud detection is necessary. For instance, 
incorporating additional information about cloud motion could assist to 
distinguish different layers due to varying motion patterns. Also, apply-
ing semi-supervised learning to larger datasets from multiple cameras 
and observation sites could further improve generalization capabilities. 
Moreover, this study did not examine the impact of CloudMix indepen-
dently because the primary focus was to demonstrate the effectiveness 
of the complete semi-supervised framework, which includes CloudMix. 
However, future research could explore the extent to which different 
data augmentation techniques, such as CloudMix, add value to semantic 
cloud segmentation in isolation.
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Fig. B.1. Confusion matrices for the semi-supervised, the fully-supervised baseline and the Fabel 2022 models on the validation dataset.
Appendix A. Qualitative verification of weak label generation

While a comprehensive quantitative comparison with manually an-
notated labels would counteract the goal of reducing annotation effort, 
we conducted a qualitative verification to assess the reliability of the 
weak labels. Therefore, we randomly selected one weakly labeled time 
interval for each loud layer (low, mid and high) and manually inspected 
representative images (first, middle and last) to verify the consistency 
and plausibility of the assigned labels, as shown in Fig.  A.1.

The images in the first row are weakly labeled as low-layer and 
primarily depict thick cumulus clouds, which typically occur at lower 
altitudes. In contrast, the clouds in the third row are thin cirrus clouds, 
which are prevalent at high altitudes above 6000 m [26]. The clouds 
in the second row appear thicker than the high-layer clouds but not 
as dark as the low-layer clouds. This is a typical optical appearance 
for mid-layer clouds. Visibly, the images in each row primarily capture 
clouds from the assigned layer. This suggests that our assumption that 
weak labels can be assigned based on ceilometer measurements of cloud 
base height is mostly correct. Still the weak labels are not perfect, 
because clouds that do not travel above the zenith are not captured 
due to the point measurement of the ceilometer. This explains why 
low-layer clouds appear on the edges of the images in the third row. 
12 
However, since these clouds are so far away, they only occupy a small 
portion of the images and can be mostly disregarded by masking all 
parts of the images with elevation angles below 30 degrees, as discussed 
in Section 2.3.

Appendix B. Detailed results on the validation dataset

Classwise metrics on the validation dataset are shown in Table  B.1. 
The semi-supervised model achieves slightly lower IoU (less than 1%) 
for the clear sky, low-layer and mid-layer classes compared to the fully-
supervised baseline and Fabel 2022 models, but improves by over 7% 
and 13% in IoU for the high-layer class.

The confusion matrices on the validation dataset are shown in Fig. 
B.1. For the semi-supervised model, there is less confusion of high-
layer clouds with clear sky and mid-layer clouds compared to the 
fully-supervised baseline and Fabel 2022 models. 

Data availability

The used datasets in this work will be made publicly available under 
the following https://doi.org/10.5281/zenodo.14639170.

https://doi.org/10.5281/zenodo.14639170
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Table B.1
Classwise IoU, precision and recall for the semi-supervised, the fully-
supervised baseline and the Fabel 2022 models on the validation dataset.
 Metric Class Fabel 2022 Baseline SSL  
 IoU Clear-sky 91.38 91.25 91.37 
 IoU Low-layer 66.15 72.61 72.25 
 IoU Mid-layer 33.59 59.14 58.52 
 IoU High-layer 48.54 54.15 61.68 
 Recall Clear-sky 97.04 97.15 96.36 
 Recall Low-layer 85.40 84.12 84.06 
 Recall Mid-layer 39.64 73.17 69.66 
 Recall High-layer 68.89 63.70 77.53 
 Precision Clear-sky 94.00 93.76 94.61 
 Precision Low-layer 74.59 84.15 83.73 
 Precision Mid-layer 68.76 75.05 78.55 
 Precision High-layer 62.17 78.32 75.11 
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