elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Self-supervised learning for segmentation of polarimetric SAR imagery

Thuillier, Theo (2025) Self-supervised learning for segmentation of polarimetric SAR imagery. Diplomarbeit, ENSTA Bretagne.

[img] PDF
3MB

Kurzfassung

Semantic segmentation of Polarimetric Synthetic Aperture Radar (PolSAR) imagery is crucial for environmental monitoring, but the segmentation accuracy is often limited by the scarcity of annotated data. Acquiring reliable ground-truth labels for PolSAR is inherently challenging, often requiring complex and logistically demanding field campaigns. This study investigates self-supervised learning (SSL) to mitigate this limitation using the Pol-InSAR-Island benchmark dataset. We propose a framework that employs a Masked Autoencoder (MAE) to learn robust feature representations from unlabeled PolSAR data, which are subsequently fine-tuned within a U-Net architecture for semantic segmentation. We conducted a comprehensive ablation study to compare the SSL-pretrained model against a fully supervised baseline. This analysis systematically evaluated how different data representations, normalization strategies, and data augmentation techniques affect model performance. The results demonstrate a substantial performance gain from SSL pretraining, boosting the mean Intersection over Union (IoU) from 21.71\% (supervised baseline) to 36.93\%. Furthermore, the pretraining enhanced training stability, halving the coefficient of variation (CV) across runs from 1.22 to 0.66. Our analysis confirmed that an extended log-ratio data representation combined with a trimmed standardization and clipping normalization strategy yielded the best performance. While data augmentation techniques like CutMix offered moderate improvements, the contribution from SSL pretraining was markedly more impactful, especially for segmenting classes with complex, heterogeneous boundaries. These findings establish SSL as a highly effective strategy for PolSAR semantic segmentation, demonstrating that powerful, transferable features learned from unlabeled data can enable high-accuracy classification even with a severely limited number of labeled samples.

elib-URL des Eintrags:https://elib.dlr.de/216063/
Dokumentart:Hochschulschrift (Diplomarbeit)
Titel:Self-supervised learning for segmentation of polarimetric SAR imagery
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Thuillier, Theotheo.thuillier (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
DLR-Supervisor:
BeitragsartDLR-SupervisorInstitution oder E-Mail-AdresseDLR-Supervisor-ORCID-iD
Thesis advisorHänsch, RonnyRonny.Haensch (at) dlr.dehttps://orcid.org/0000-0002-2936-6765
Datum:27 August 2025
Erschienen in:Self-supervised learning for segmentation of polarimetric SAR imagery
Open Access:Ja
Seitenanzahl:40
Status:veröffentlicht
Stichwörter:Deep Learning, self-supervised learning, SAR polarimetry, semantic segmentation, data representation, masked autoencoder.
Institution:ENSTA Bretagne
Abteilung:Observation and Artificial Intelligence System
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Flugzeug-SAR
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie
Hinterlegt von: Thuillier, Theo
Hinterlegt am:27 Aug 2025 15:05
Letzte Änderung:27 Aug 2025 15:14

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.