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Résumé

La segmentation sémantique de I'imagerie Radar a Syntheése d’Ouverture Polarimétrique (PolSAR)
est cruciale pour la surveillance environnementale, mais la précision de la segmentation est souvent
limitée par la rareté des données annotées. L’acquisition de vérité terrain fiables pour les données PolSAR
est intrinsequement difficile, nécessitant souvent des campagnes de terrain complexes et exigeantes
sur le plan logistique. Cette étude explore 'apprentissage auto-supervisé (SSL) pour pallier cette
limitation en utilisant le jeu de données de référence Pol-InSAR-Island [15]. Nous proposons un cadre
méthodologique qui emploie un auto-encodeur masqué (MAE) pour apprendre des représentations de
caractéristiques robustes a partir de données PolSAR non étiquetées, lesquelles sont ensuite affinées au
sein d’une architecture U-Net pour la segmentation sémantique. Nous avons mené une étude d’ablation
compléete pour comparer le modele pré-entrainé par SSL a un modele de référence entierement supervisé.
Cette analyse a évalué systématiquement I'impact des différentes représentations de données, stratégies
de normalisation et techniques d’augmentation de données sur les performances du modele. Les
résultats démontrent un gain de performance substantiel grace au pré-entrainement SSL, augmentant
I'Intersection sur Union moyenne (IoU) de 21,71 % (modele de référence supervisé) a 36,93 %. De plus, le
pré-entrainement a amélioré la stabilité de 'entrainement, réduisant de moitié le coefficient de variation
(CV) entre les exécutions, de 1,22 & 0,66. Notre analyse a confirmé qu’une représentation des données en
log-ratio étendue, combinée a une stratégie de standardisation tronquée et de normalisation par écrétage,
a fourni les meilleures performances. Bien que les techniques d’augmentation de données comme CutMix
aient offert des améliorations modérées, la contribution du pré-entrainement SSL s’est avérée nettement
plus significative, en particulier pour la segmentation des classes présentant des frontieres complexes
et hétérogenes. Ces résultats établissent 'apprentissage auto-supervisé comme une stratégie tres
efficace pour la segmentation sémantique PolSAR, démontrant que des caractéristiques puissantes et
transférables, apprises & partir de données non étiquetées, peuvent permettre une classification de
haute précision méme avec un nombre tres limité d’échantillons étiquetés.

Abstract

Semantic segmentation of Polarimetric Synthetic Aperture Radar (PolSAR) imagery is crucial for
environmental monitoring, but the segmentation accuracy is often limited by the scarcity of annotated
data. Acquiring reliable ground-truth labels for PolSAR is inherently challenging, often requiring
complex and logistically demanding field campaigns. This study investigates self-supervised learning
(SSL) to mitigate this limitation using the Pol-InSAR-Island benchmark dataset [15]. We propose a
framework that employs a Masked Autoencoder (MAE) to learn robust feature representations from
unlabeled PolSAR data, which are subsequently fine-tuned within a U-Net architecture for semantic seg-
mentation. We conducted a comprehensive ablation study to compare the SSL-pretrained model against
a fully supervised baseline. This analysis systematically evaluated how different data representations,
normalization strategies, and data augmentation techniques affect model performance. The results
demonstrate a substantial performance gain from SSL pretraining, boosting the mean Intersection over
Union (IoU) from 21.71% (supervised baseline) to 36.93%. Furthermore, the pretraining enhanced
training stability, halving the coefficient of variation (CV) across runs from 1.22 to 0.66. Our analysis
confirmed that an extended log-ratio data representation combined with a trimmed standardization
and clipping normalization strategy yielded the best performance. While data augmentation techniques
like CutMix offered moderate improvements, the contribution from SSL pretraining was markedly more
impactful, especially for segmenting classes with complex, heterogeneous boundaries. These findings
establish SSL as a highly effective strategy for PolSAR semantic segmentation, demonstrating that
powerful, transferable features learned from unlabeled data can enable high-accuracy classification
even with a severely limited number of labeled samples.
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1 Introduction

1.1 Host institution

This report is the outcome of an internship conducted at the German Aerospace Center (DLR),
Microwaves and Radar Institute, in Oberpfaffenhofen, Germany. The DLR, established in 1969,
serves as the national research center for aerospace, energy, and transportation, and is responsible for
implementing the German space program.

The internship was carried out within the SAR Technologies Department, led by Dr. Andreas
Reigber, mainly focusing on the development of the F-SAR sensor, an advanced airborne Synthetic
Aperture Radar (SAR) system featuring full polarimetry and multi-frequency capabilities. Technical
supervision for the internship was provided by Dr. Ronny Héansch, who leads the machine learning
team within the Signal Processing Group of the SAR Technology Department.

1.2 Context

Climate change and environmental pressures have highlighted the need for reliable Earth observation
systems capable of monitoring diverse landscapes and processes. Optical remote sensing has traditionally
been an important tool in this context, yet its applicability is often limited by cloud coverage,
illumination conditions, or adverse weather. Synthetic Aperture Radar (SAR), on the other hand,
provides day-and-night, all-weather imaging capabilities and can operate across different frequency
bands, offering a powerful and flexible means of observing the Earth’s surface. Depending on the
acquisition parameters, SAR is widely used for tasks such as vegetation monitoring, ice and snow
assessment, or coastal zone mapping.

The airborne F-SAR sensor developed at DLR enables high-resolution, fully polarimetric acquisitions
across several frequency bands, which can even be operated simultaneously. These characteristics
allow F-SAR to support a broad range of applications, from forestry and agriculture to hydrology and
cryosphere research. However, each acquisition campaign is conducted under very different conditions,
depending on geographic location and scientific objectives: one mission may cover the German North
Sea coast, another tropical rainforest, and another Arctic permafrost. As a result, the data distribution
varies strongly between campaigns. Thus, training a machine learning model to generalize from one
campaign’s data to another is neither possible nor reasonable. Developing a model that can be trained
by using data of one campaign only, without the need to generalize to other campaigns, is fully sufficient
if it only performs well for this one campaign it was trained on.

A central task in SAR data analysis is semantic segmentation, i.e. the classification of each pixel
into a meaningful land cover class. This problem is particularly relevant for polarimetric SAR (PolSAR)
and interferometric SAR (InSAR) data, as they provide rich information about scattering mechanisms
and surface structure. Semantic segmentation of SAR imagery is a challenging task as the data are
complex-valued, highly variable across frequencies and environments. Recent advances in deep learning
have shown strong potential for improving segmentation performance [53], but they rely on large,
annotated datasets. In the SAR domain, labeled data are scarce, since expert knowledge is required
for manual annotation.

To address this limitation, pretraining strategies such as self-supervised learning (SSL) have emerged
as a promising solution. The key idea is to leverage large amounts of unlabeled SAR data to learn general
feature representations that capture structural and statistical properties of the sensor measurements.
Once pretrained, these models can be fine-tuned on a small number of labeled samples from the same
campaign, thereby reducing annotation requirements while maintaining high segmentation accuracy.
Recent works in remote sensing confirm the benefit of SSL for limited-label scenarios, showing improved
stability and accuracy across multiple tasks [15].
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1.3 Objectives

The main objective of this internship is to investigate the potential of SSL for improving the
semantic segmentation of PolSAR imagery in a campaign-specific setting. In particular, this work
addresses three research questions:

e To what extent can masked autoencoder (MAE) pretraining improve network performance on a
segmentation task?

e How does the choice of data representation and normalization impact the final performance of
the model?

e How do different data augmentation strategies affect model accuracy and stability?

1.4 Outlines

This report is organized as follows: Section 1 gives the context of the work done and introduces
the objectives. Section 2 presents the fundamental principles of PolSAR, semantic segmentation, and
image preprocessing, along with an introduction to self-supervised learning. The Pol-InSAR-Island
benchmark dataset and the processing methods implemented are described in Section 3. In Section 4,
we present the deep learning approach used. Section 5 discusses the results obtained and display some
visual comparison. Finally, the findings of this study and the perspectives are summarized in Section 6.
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2 Background Concepts

This section presents the fundamental concepts that form the basis of this study. It begins
by introducing the principles of Synthetic Aperture Radar (SAR) in Section 2.1 and its extension,
Polarimetric SAR (PolSAR), in Section 2.2. Following this, Section 2.3 outlines the primary task
of semantic segmentation. The subsequent sections delve into crucial preprocessing considerations,
discussing the impact of input data representation and data augmentation techniques in Sections 2.4
and 2.5. Finally, the section concludes by presenting the self-supervised learning (SSL) paradigm
in Section 2.6, the key methodology investigated in this work.To evaluate the impact of the input
representation, trainings were run for every representation—normalization combination described in
Section 4. For each representation, we calculated the mean and standard deviation of the IoU across
all normalizations. The results are summarized in Table 4.

2.1 Synthetic Aperture Radar (SAR)

The SAR is an active remote sensing system mounted on a moving device, e.g., aircraft or spacecraft.
It illuminates a target surface with microwaves and retrieves the reflected signal (backscattered). This
process enables the generation of high-resolution images that are unaffected by daylight, cloud cover,
or weather conditions [17]. During each cycle of emission and reception, the system measures the
characteristics of the backscattered pulse, such as time delay, amplitude, and phase, in order to produce
an image. The moving capacity of the system enables it to combine multiple received signals to
synthetically create an aperture much larger than the physical antenna [30].

SAR systems have the capacity to adapt the wavelength to the application and overcome problems
that arise when using only optical sensors. This characteristic makes them useful for Earth observation.
The common bands used are the X band [2.4-3.8 cm], the C band [3.8-7.5 cm], the S band [7.5-15 cm],
the L band [15-30 cm], and the P band [30-100 cm]. Band selection depends on the application, as
it involves a trade-off between penetration and resolution. The lower the wavelength, the higher the
resolution, but the penetration is reduced. Table 1 summarizes the result and shows some examples of
missions using each band.

Band Applications Missions
X [2.4-3.8] cm | High resolution (urban monitoring, ice/snow, ) | TerraSAR-X, COSMO-SkyMed
C [3.8-7.5] cm Agriculture, ocean, maritime navigation Sentinel-1, RADARSAT-2
S [7.5-15] cm Agriculture, Atmosphere HJ-1C, NISAR
L [15-30] cm Forestry, soil moisture, geology ALOS-2, SAOCOM
P [30-100] cm Biomass estimation, subsurface imaging BIOMASS (ESA)

Table 1 — SAR Bands, Applications, and Example

The previously described system can be illustrated by its geometry, schematized in Figure 1. Tt
consists of a platform moving in the azimuth along track direction, and where the slant range is the
perpendicular direction to the radar flight path. The covered radar scene is delimited by the swath
width, which defines the extent of the ground range. SAR systems emit a chirp, a waveform that is
linearly frequency modulated, resulting in the current instant frequency f;(t) = f. + k, - t where f, is
the carrier frequency and k. is the chirp rate. This leads to a bandwidth of B, = k. - 7 where 7 is the
duration of the pulse. The system then receives the echo, which is digitized into a two-dimensional
data matrix. The range dimension is referred to as fast time, while the azimuth dimension is referred
to as slow time. The distance between the target at the coordinates (xg,0, Ah), and the radar moving
at a constant velocity v is computed with the Pythagorean theorem.

To illustrate SAR geometry, Figure 1 from [30], shows a moving platform in the azimuth / along-
track direction, and where the slant range is the perpendicular direction to the radar flight path. The
covered radar scene is delimited by the swath width, which defines the extent of the ground range, and

10
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the duration of the data take defines the azimuth extent. SAR systems emit a chirp, a waveform that
is linearly frequency modulated, resulting in the current instant frequency f;(t) = f. + ky - t where f.
is the carrier frequency and k, is the chirp rate. This leads to a bandwidth of B, = k, - 7 where 7 is
the duration of the pulse. The system then receives the echo, a two-dimensional data matrix which
is referred to in range as fast time and in azimuth as slow time. The distance between the target
at the coordinates (xg,0, Ah), and the radar moving at a constant velocity v is computed with the

Pythagorean theorem as:
r(t) = /3 + (vt)2, ro=+/(H —h)2+ 23, (1)

where 79 = r(t = 0). The product of the illumination time (t) by the velocity (v) is shorter than ro,
which satisfies the condition 7;—; < 1 and enables us to make the approximation:

(vt)?
27’0 '

r(t) &~ ro+ (2)

Finally, the phase variation is linked to the azimuth by the relation:

olt) =~ Q

where X is the wavelength.

-
i
.

Swath Width

Platform Height H .

Ueround Range

Figure 1 — Illustration of the SAR imaging geometry. rg stands for the shortest approach distance, ©,
for the azimuth beamdwidth and v for the sensor velocity. Adapted from [30].

11
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The raw signal cannot be used directly and requires several signal processing steps to create a
high-resolution image. The basic SAR processing range compression and azimuth compression are
summarized in Figure 2. Range compression uses matched filtering in the frequency domain by
correlating the received signal with the complex conjugate of the transmitted chirp spectrum, resulting
in a slant-range resolution of:

€0

57’ = 2_Br, (4)

where cq is the speed of light and B, the bandwidth of the transmitted pulse. Azimuth compression
exploits Doppler frequency variations induced by platform motion to synthetically enlarge the antenna
aperture by a length of:

ro
A

where d is the real antenna length, leading to an azimuth resolution of:

Lsa - da: (5)

d
The effective illumination time, defined as:
7"0)\
E ~—, 7
i~ (7

increases for shorter antennas, thus improving azimuth resolution.

The SAR image output is represented with intensity values, where each pixel represents the
reflectivity of the ground at that location. For accurate interpretation, two additional processing steps
are essential: calibration, to ensure that every point has an intensity representative of its reflectivity,
and geocoding to guarantee that every pixel is associated with a position on the ground [30]. Various
other factors must be considered, including Range Cell Migration (RCM) and speckle [30].

Range Compressed Data

Range =

Range Reference Function Azimuth Reference Function
N ] AW VAW | Far Range
t g MWK
) 2 AV VAAA
E =9
£ [ v
B Near Range
Amplitude = Azimuth =+

Figure 2 — Summary of basic SAR processing step. Adapted from [30)].
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2.2 Polarimetric SAR (PolSAR)

Polarimetric Synthetic Aperture Radar (PolSAR) is a remote sensing technique that analyzes the
polarization properties of scattered electromagnetic waves. The technique is based on the complex
scattering matrix S. This matrix describes how a target modifies the polarization of an incident
electromagnetic wave. The reflection on the target transforms the incoming plane wave E' into the
scattered wave E". This transformation is formalized by the equation:

exp(—ikr)

E" = [S|E™, (8)

r

where k is the wavenumber, and r is the range to the target. The common polarizations used are
horizontal (H) and vertical (V), which means that matrix 8 becomes:

E;{ . exp(—ikr) SHH SHV E}{ : (9)
Ey | r Sve Svv| |Ey|

The scattering matrix describes the scattering behavior of each pixel. In the case of a monostatic
SAR, where the same antenna is used for transmission and reception, the reciprocity theorem holds
Sy = Svm. To characterize the scattering process, the coherency matrix [T] (or covariance matrix

[C]) is computed thanks to the scattering vector, either in its lexicographic form :

B SHH
klex = | Suav | » (10)
Syv
or in the Pauli form:
B 1 Suwu + Svv
kpawi = —= |SaH — Svv | - (11)
\/§ 25y

The diagonal elements of the matrix 12, 131,759,133 represent the power in each scattering
mechanism (single-bounce, double-bounce, and volume), while the off-diagonal elements encode the
correlation between channels. This matrix is particularly useful for discriminating targets that may
reflect the same intensity but yield different scattering behavior (vegetation and man-made structures).
coherency matrix [T] is then defined as the product of the scattering vector by its Hermitian transpose
[30] such as:

. (|Seu + Svv|?) ((Suu + Svv) (St — Svv)) 2{(Sam + Svv)Shy)
T3 = (Rpautibbau) = (S = Svv) Stz + Sirv) (ISum — Svv[?) 2((Suun — Svv)Sipy) | (12)
2(Suv (Siy + 5vv)) 2(Suv (Siu = Svv)) 4(|Suvl?)

2.3 Semantic Segmentation

Natural Image Segmented Image

Figure 3 — Illustration of image segmentation. Adapted from [11].

13
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Image segmentation is a subfield of computer vision that consists of dividing an image into multiple
coherent regions, thereby transforming raw pixels into more interpretable units. Classification assigns
a single label to an entire image, while detection localizes objects using bounding boxes. In contrast,
segmentation operates at the pixel level, and each pixel in the image is assigned a semantic label. An
illustration of this principle is shown in Figure 3.

Before the development of deep learning—based methods, early approaches to semantic segmentation
generally relied on handcrafted features combined with classical machine learning algorithms. Feature
descriptors were designed to capture local texture, intensity statistics, or edge information, and
classifiers such as support vector machines or random forests were trained to predict pixel labels from
these features. While these pipelines achieved useful results, they required substantial manual feature
engineering and often struggled to generalize across datasets or imaging conditions.

The rise of deep learning methods has profoundly changed the field of computer vision. Deep neural
networks consist of multiple interconnected layers that automatically extract hierarchical features
from data. These models excel at complex pattern recognition tasks by optimizing the weights of the
connections to minimize the error between the ground Truth and the prediction [11]. A breakthrough
moment was the introduction of AlexNet [23], the first deep convolutional neural network (CNN) to
achieve state-of-the-art results in large-scale image recognition. CNNs apply convolutional kernels and
pooling operations to extract spatial hierarchies, effectively automating the feature extraction process
that classical segmentation methods required manually.

Based on the CCN, architectures for semantic segmentation such as DeepLabv3+ [3] and U-Net [10]
became state-of-the-art on optical images. DeepLabv3+ integrates dilated convolutions and multiscale
feature aggregation to capture both local and global context. U-Net uses an encoder—decoder structure
with skip connections that preserve fine-grained spatial details.

Already used for optical images, the described CNN architectures have been adapted to SAR
imagery. For example, a U-Net-based framework has been used to segment rivers and land cover
in Sentinel-1 imagery [32], while fully convolutional networks (FCNs) such as FCN-ResNet50-32s
have been fine-tuned on TerraSAR-X patches for building extraction [19]. Transfer learning from
optical-trained FCN and U-Net models has also been applied to high-resolution airborne PolSAR
datasets, achieving competitive results in land cover mapping [1].

However, semantic segmentation of SAR images remains challenging due to the scarcity of labeled
data. Annotating SAR imagery is both expensive and time-consuming, as it requires a human expert.
Unlike optical images, which can benefit from synthetic datasets generated using graphics engines,
realistic synthetic SAR data is far more difficult to produce, resulting in a scarcity of labeled datasets.
It is therefore sometimes necessary to aggregate the data from several campaigns, which is no easy
task [2].

Recent state-of-the-art methods have therefore adapted CNN architectures to better handle these
constraints. Inception-based encoder—decoder networks with multiscale skip connections [29] have been
proposed to capture features at different resolutions, while multiscale attention-based FCNs (MANet)
integrate attention mechanisms to emphasize relevant scattering structures [50]. More advanced
designs, such as the Multi-Path Residual Network (MP-ResNet) [6] have been introduced to overcome
the limited expressiveness of shallow CNNs, improving the extraction of high-level semantic features
without overfitting. Other architectures like HR-SAR-Net [13] demonstrate that carefully designed
residual connections and shallow networks can still perform effectively when overfitting is a risk.

2.4 Impact of input representation for image processing

Deep learning models for image processing performance depend not only on the network architecture
but also on the data representation. In SAR imagery, where the input data are noisy, high-dimensional,
and complex-valued, the representation choice is not easy. Choosing a representation is challenging
because it affects feature extraction and convergence speed. A clever preprocessing pipeline can

14
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mitigate classical image processing issues such as varying illumination, inconsistent contrast, and
speckle, enabling models to generalize more effectively to unseen data.

A common preprocessing technique used is scaling transformations, making the input data numeri-
cally stable. A basic transformation, normalization, consists of shifting every pixel intensity into a
fixed interval normally [0, 1] or [—1, 1]. This min-max transformation is defined by :

I — Iy
Inormzlimln

max Imin

) (13)

where Iy represent the minimum and I, the maximum pixel intensities in the dataset. This
rescaling of the data enables each characteristic to contribute equally during the learning process,
preventing the domination of features of high value and slowing the learning process [13]. Another
common transformation is the standardization, also known as the z-score normalization. This
transformation centers the data by subtracting the average and rescales it with a unitary variance,
such as:

Istana = u> (14)
o

where u is the mean and o is the standard deviation of the pixel values. Unlike the min-max
normalization, the standardization is less sensitive to high pixel values because it’s using the mean and
the standard deviation of the data. However, outliers will still be present in the data.

As described in Sections 2.1 and 2.2, SAR images are inherently complex because they encode the
scattering properties of the observed targets. Feeding raw high-dimensional polarimetric data directly
into a deep learning model is generally not feasible. This is due to the so-called curse of dimensionality:
as the number of input dimensions grows, the volume of the feature space increases exponentially,
making the available training samples sparse relative to the space they must cover. In practice, this
sparsity hinders the model’s ability to learn generalizable patterns and greatly increases the risk of
overfitting, especially when annotated data are scarce.

A first challenge is Speckle, generating a granular interference that reduces the accuracy of
pixel-level tasks like classification by decreasing spatial consistency [28]. Traditional techniques try
to reduce its influence through multi-look processing, averaging multiple acquisitions at the cost of
reducing the spatial resolution [27], or use specific filters such as Lee filter. Recent approaches use
deep learning models such as autoencoders or U-Net architectures, trained to remove noise patterns
from data while preserving structural details [3].

A second challenge is the data multi-polarization. Each pixel in PolSAR imagery is linked with
a coherency matrix, resulting in multiple polarization channels. To process such data, transformation
techniques are used to turn complex-valued information into a real-valued representation easier to
handle for a neural network. Standard methods include [26, 1]:

¢ Pauli decomposition: separates scattering into odd-bounce, even-bounce, and volume compo-
nents.

e Freeman-Durden decomposition: split the scattering mechanisms as surface, double-bounce,
and volume scattering.

e H-a decomposition: relies on entropy and average scattering angle, and is particularly effective
for land cover classification.

The importance of representation has been demonstrated by han et al. [12]. A feature selection
algorithm combining fast filtering with an SVM classifier was used to select optimal features from
multiple polarimetric decompositions, resulting in a higher Overall Accuracy (OA) than the CNN-based
approach from [52], which was not using a tailored feature representation.
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2.5 Data augmentation for image processing

Data Augmentation (DA) is a fundamental technique used in deep learning to expand the training
dataset by generating new samples from existing ones. The diversity of the training set then increases
without the need for expensive new acquisitions, improving the model’s ability to generalize and
reducing the risk of overfitting [35].

Common data augmentation techniques are the geometrical one, applying transformation such
as rotation, flipping, translation to help the model become invariant to the rotation and position of
the object in the image. This can be interpreted as observing the target from a different viewpoints.
Photometric transformations, altering the color and the intensity in the image, are employed on optical
image to simulate variation in lighting conditions and colors distortions [18]. More advanced techniques
are based on occluding information, such as random erasing, cutout, and channel dropout. These
techniques hide parts of the image or specific channels, making the model robust when such information
is missing. Adding Gaussian or multiplicative noise to the image to simulate sensor imperfections,
helping the model to focus on essential features rather than irrelevant details [31].

These techniques, developed for optical imagery, can be used on SAR images but are not as effective.
However, the intrinsic characteristics of these data have resulted in the development of domain-specific
augmentation methods. Huang et al. [17] highlighted that generative AI models offer a powerful
solution for the augmentation of SAR images, addressing both the quantity and quality issues.

Increasing Data Quantity

In many SAR Applications, the number of training samples are limited to a few ranges of viewing
angles, restricting the variability of the training dataset. Standard geometric transformation (rotation,
flipping), cannot fully capture the strong dependence of SAR back-scatter. Unlike optical imagery,
SAR data encodes the scattering properties of objects, including backscatter intensity, multiple-bounce
interactions, and aspect-angle dependence. To overcome these limitations, Song et al. [10] developed an
advanced generative approaches to synthesize novel target perspectives from existing SAR acquisitions.
Generative models, such as adversarial autoencoders (AAEs) and generative adversarial networks
(GANSs), have demonstrated the ability to produce physically plausible SAR images across a range of
azimuths and elevations.

Another approach to generate new data is the Optical-to-SAR (0O2S) translation technique. The
principle is to use optical imagery to fill missing information in SAR datasets or to generate synthetic
SAR samples when direct acquisition is unavailable. The challenge with this approach is that a single
optical image corresponds to multiple SAR images depending on the SAR geometry. To moderate this
ambiguity, an unsupervised domain adaptation framework based on progressive transfer learning using
generative adversarial networks (GANs) was proposed in [37]. Due to the huge difference between the
input data, the model gradually aligns optical and SAR domains at three complementary levels: pixel
space, latent feature space, and prediction space, enabling a more reliable transfer. Using the principle,
the temporal shifting GAN (TSGAN) [34] introduces both temporal and multimodal information.
The model takes as input an optical image at the desired timestamp, a SAR image acquired at a
different time but with the same viewing geometry, and a change map derived from optical imagery
between the two timestamps. A siamese encoder architecture is incorporated in both the generator
and discriminator to enhance feature consistency. A change-weighted loss function is used, preventing
overfitting on the input SAR data. TSGAN reduces the GAN hallucination phenomenon and achieves
higher Structural Similarity Index Measure (SSIM) and Peak Signal to Noise Ratio PSNR compared
to traditional translation methods by explicitly focusing on unchanged regions [17].

SAR image composition represents another strategy to increase the quantity. The principle is to
synthesize new samples by seamlessly combining SAR patches of targets, SAR images of complex
backgrounds, and other images logically [17]. This strategy has been used mainly to detect tasks in
cluttered environments such as maritime environments, using a style-embedded augmentation network
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to seamlessly integrate ship target slices into sea clutter [12]. Similarly, Kuang et al. [24] proposed a
collaborative sample enhancement framework based on Pix2Pix background synthesis, which enables the
creation of flexible, diverse, and high-quality samples that preserve both target fidelity and background
realism.

Improving Data Quality

Besides expanding the dataset in terms of quantity, data augmentation tries to enhance the intrinsic
quality of SAR images. A major limitation in SAR is the presence of speckle, which is multiplicative and
spatially correlated, reducing interpretability and degrading the performance of pixel-level tasks. Several
data-driven approaches have been implemented, Cycle-GAN-based methods consider despeckling as
an image-to-image translation task, avoiding the need for a ground truth image [25]. Diffusion-based
frameworks such as the SAR-DDPM [33] introduce a noise predictor conditioned on speckled input,
while R-DDPM [16] incorporates overlapping region sampling during the inverse diffusion process to
better preserve structures. Both approaches have been successful in removing speckle from the image
without introducing artifacts, representing a step forward compared to traditional filters.

Another possible limitation of SAR datasets is the lack of complete polarimetric information. Full
quad-pol acquisitions are not always acquired due to sensor limitations or acquisition costs. Recent
strategies aim at reconstructing the missing polarimetric channels from partial measurements using

deep learning. Song et al. [39] reconstruct full-pol covariance matrices from single-polarization images.
In the same way, Deng et al. [5] generated pseudo quad-pol data from dual-pol acquisitions in order to
improve urban damage assessment. Zhang et al. [51] designed a complex-valued dual-branch CNN to

reconstruct pseudo quad-pol matrices from compact polarimetric data.

2.6 Self-supervised Learning (SSL)

Self-supervised Learning (SSL) is a machine learning paradigm in which models are trained on a
pretext task tailored to exploit the inherent structure of the data. The central advantage of SSL is
that it removes the dependency on manual annotations, allowing models to leverage massive unlabeled
data. In the field of SAR, where annotated datasets are scarce, this approach is particularly relevant.
The representation learned through SSL can be fine-tuned on specific tasks such as classification,
segmentation, detection, and often achieves equivalent or better results in comparison to Fully Supervised
Learning (FSL) [21].

SSL methods can be categorized into three families: autoassociative learning, contrastive learning,
and non-contrastive learning.

Autoassociative learning, introduced in 1991 by Mark Kramer [22], is a technique based on
the principle of reconstructing missing or altered parts of the inputs. This approach can be seen as
an extension of the Principal Component Analysis (PCA) to nonlinear transformation. The model’s
objective during training is to reconstruct the original input from a corrupted version while minimizing
a reconstruction loss, often Mean Square Error (MSE). The alteration techniques employed include
partial occlusion, small geometrical transformations, or patch masking. Autoassociative SSL has
been successfully applied in domains such as medical imaging and remote sensing, where it produces
semantically meaningful and noise-robust representations [14, 7].

Contrastive learning, relies on the principle of similarity discrimination. Multiple augmented
views of the same instance through techniques such as cropping, noise injection, or color distortion
are generated. An augmented image and the original form a positive pairs, while views from different
instances are treated as negative pairs. The model learn to maximize the similarity in the embedding
space for the positive pairs and minimize it for the negative ones. Loss functions such as InfoNCE or
Triplet Loss [35, 30] are commonly used. This results in embeddings where semantically similar inputs
are clustered together and dissimilar ones are scattered. A strength of contrastive learning is that its
performance scales with strong and diverse data augmentation techniques.
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Figure 4 — Schematic illustration of the Masked Autoencoder principle, adapted from [14].

Non-contrastive learning, unlike contrastive approaches, removes the constraint for negative
samples. Instead, it encourages the model to produce different augmented views of the same input
to produce similar embeddings, while using internal mechanisms to prevent representational collapse.
An example of application of this method is the framework Bootstrap Your Own Latent (BYOL),
proposed by Grill et al. [10]. They used two networks, an online and a target network learning from
one another. An augmented view of an input is passed through the online network, which is trained to
predict the representation produced by the target network on a different view of the same input. The
target network’s weights are updated as a moving average of the online network, ensuring training
stability.

Masked Autoencoder (MAE) for Pretraining

MAE, introduced by He et al. [14], representes an application of the autoassociative approach to
images. The key principle is to randomly mask a large portion of image patches (e.g., 75%) and train
the model to reconstruct the missing pixels from the remaining, visible ones. Figure 4 illustrates the
principle. The original architecture is asymmetrical: a lightweight encoder processes only the unmasked
patches, extracting compact feature representations, while a more powerful decoder reconstructs the
original image, including the masked regions. This design enables the model’s encoder to focus on
learning meaningful, transferable representations rather than trivial low-level statistics.

In the SAR image field, MAE has attracted significant attention as it offers the possibility to leverage
huge unlabeled datasets However, considering the SAR-specific challenges such as speckle, geometric
distortions, and complex-valued polarimetric channels, adaptations of the MAE framework can be
useful to achieve better performance. For instance, Wang et al. [11] proposed the Feature-Guided
Masked Autoencoder (FG-MAE), where the model reconstructs higher-level features instead of raw
pixels. They use the Histogram of Oriented Gradients (HOG) as reconstruction targets to be less
sensitive to speckle. Experimental results show that FG-MAE significantly improves the performance
of downstream SAR tasks and scales effectively to larger datasets.
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3 Materials

This section details the dataset and preprocessing steps implemented. We first introduce the
Pol-InSAR-Island benchmark dataset [15], detailing its acquisition characteristics and the provided
land cover annotations. Subsequently, we describe the data processing pipeline, including patch
extraction, the creation of multiple input representations from the PolSAR coherency matrix, and the
different normalization strategies employed in our experiments.

3.1 Pol-InSAR-Island Dataset

The dataset employed in this study is the Pol-InSAR-Island benchmark, specifically designed for
multi-frequency Polarimetric Interferometric SAR (Pol-InSAR)-based land cover classification [15]. It
addresses the scarcity of publicly available, comprehensively annotated datasets in this domain. To
ensure reproducibility and facilitate fair comparisons across methods, the dataset includes a predefined
train—test split.

The data were acquired over the East Frisian island of Baltrum, Germany, using the German
Aerospace Center (DLR) airborne F-SAR system. Two frequency bands are provided: S-band and L-
band. Leveraging multiple frequencies enhances classification performance by providing complementary
scattering signatures, which improve discrimination between classes that are otherwise spectrally similar
at a single frequency.

To cover the full extent of the island, two separate flight passes (Flight Path 1 (FP1) and Flight
Path 2 (FP2)) were conducted. The resulting imagery dimensions are 3616 x 2502 pixels for FP1 and
3616 x 2540 pixels for FP2. Data are delivered as geocoded 6 x 6 coherency matrices sampled on a 1
m X 1 m grid. The flight paths are schematized in Figure 5.

Figure 5 — Schematic representation of the F-SAR flight paths used for data acquisition. Adapted from
[15]
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Data structure:

F— data # Multi-frequency Pol-InSAR data
| — rP1 # Flight path 1
| | —L # L-band (frequency)
| | | — T6 # Geocoded Pol-InSAR data components of the & x & coherency matrix
| | | F— incidence.bin # Incidence angle [rad]
| | | F— kz_*.bin # Vertical wavenumber for wv, hv, vh and vv polarization [rad/m]
| | [ L— pauli.bmp # Pauli RGE image of the master scene
| | L—s # S-band (frequency)
(. = ..
| L— rp2 # Flight path 2
| =
L— label # Land cover labels

— FP1 # Flight path 1

| F— label_train.bin # Geocoded training and test label files (*.bin + *.hdr)

| F— label_test.bin

I

L— rpP2 # Flight path 2

e -

Figure 6 — Dataset file structure and decomposition of coherency matrices. Adapted from [15].

3.2 Dataset Processing

The dataset is distributed in ENVI format, with flat-binary raster files (.bin) accompanied by ASCII
header files (*.hdr). The real and imaginary components of the diagonal elements and upper triangle
of the 6 x 6 coherency matrix are stored in separate files (T11.bin, T12_real.bin, T12_imag.bin).
Figure 6 illustrates the file structure. The full 6 x 6 coherency matrix can be understood as two distinct
3 x 3 coherency matrices T and T5.

As this work focuses on PolSAR imagery, only 77 was considered for feature extraction and further
analysis. Since neural networks typically require real-valued inputs, the complex-valued matrix was
converted into a real-valued representation by separating real and imaginary parts of the off-diagonal
terms while keeping diagonal terms unchanged. This preserves the Hermitian structure while producing
a consistent set of real-valued channels usable by the network.

Each pixel is annotated with one of 12 land cover classes: 0 — Unassigned, 1 — Tidal flat, 2 — Water,
3 — Coastal shrub, 4 — Dense high vegetation, 5 — White dune, 6 — Peat bog, 7 — Grey dune, 8 — Couch
grass, 9 — Upper salt marsh, 10 — Lower saltmarsh, 11 — Sand, and 12 — Settlement.

As mentioned already, the train-test split of the dataset has already been performed using a 'maze’-
based spatial partitioning method. This ensures that the test set contains only spatially distinct, unseen
areas while preserving similar class distributions across sets. Figure 8 shows the original segmentation
map alongside the derived train and test partitions. Table 3.2 summarizes the class distributions, while
Figure 7 highlights class imbalance in the training set, with several underrepresented categories (e.g.,
peat bog, couch grass).

Table 2 — Class Distribution
Category | Class 1 | Class 2 | Class 3 | Class 4 | Class 5 | Class 6 | Class 7 | Class 8 | Class 9 | Class 10 | Class 11 | Class 12

Train 6.78% | 21.48% | 5.39% | 3.45% | 3.66% | 0.93% | 13.92% | 1.66% | 12.05% | 9.33% 9.27% 12.07%
Test 8.73% | 18.67% | 4.61% | 2.49% | 2.85% | 1.21% | 14.35% | 1.92% | 12.46% | 8.26% 10.98% | 13.47%

20



.'\ INSTITUT
ENSTR | @i 2
DLR

Training Set Ground Truth Distribution

Frequency (log)

value

Figure 7 — Histogram of the ground truth distribution in the training set
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Figure 8 — Original ground-truth segmentation map (left), and train (middle) / test (right) partitions
based on the “maze” split.

The original large images were subdivided into non-overlapping patches of 256 x256 pixels, which is
the patch size used in the original dataset definition. For FP1 (3616x2502 pixels), after excluding 382
unusable top pixels, this yields:

{3616 — 382J o {2502
256 256

J:12><9:108 (15)

patches, evenly split between the train and test sets. Applying the same procedure to FP2 (3616x2540
pixels) also results in 108 patches, giving a total of 216 patches.

To investigate the influence of input representation on the model’s performance, several transfor-
mations of the coherency matrix were implemented. The general idea was to assess the framework’s
performance as fast as possible by implementing simple and fast transformations. Additionally, the
extended log-ratio representation helps preserve as much of the scattering mechanism as possible while
helping the model generalize more easily. Here is a list of the implemented transformations:
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e Grayscale representation: Only the T7; coefficient is preserved and replicated across three
channels, producing a grayscale-like input while discarding cross-polarization terms :

Ty Tz Tis T
T = T21 T22 T23 — X = T11 (16)
T31 T3 T33 Ty

e Diagonal-only representation: The three diagonal terms are retained, providing information
on scattering power in co- and cross-polarized channels:

T
T - X = T22 (17)
T3

e Log-diagonal representation: To reduce the dynamic range of diagonal values, a logarithmic
transformation is applied:
log(T11 + 1)
T — X = |log(Th + 1) (18)
log(T33 + 1)

¢ Real-Imag decomposition: All diagonal terms are preserved, and each complex off-diagonal
element is split into real and imaginary parts. This results in a compact 9-channel real-valued
representation:

Ty
Re(Tlg)
Re(Tlg)
Im(T12>
T X = (TQQ) s (19)
Re(ng)
Im(Th3)
Im (ng)

T33)

e Extended log-ratio representation: A richer representation is obtained by combining loga-

rithms of diagonal and magnitude terms with normalized cross terms, capturing both intensity
and relative phase information:

log(TH)
log(M (T12))
log(M (T13))

log(ng)
log(M (T»3))

log (ng)

T X= (20)

where M (T;;) is the magnitude of the complex element Tj;.

In addition to representation choices, normalization of the transformed channels is crucial to
stabilize training. Two strategies were implemented:
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Figure 9 — Histogram of the data distribution among the samples showing the first value of the
coherency matrix (T11). The right plot excludes the top 5% of values.

e Min—max scaling, applied either globally or after excluding the top 5% of values. In the latter
case, two approaches were tested:

1. excluding the extreme values when computing Ii,in and Iihax, but leaving the data unchanged;

2. excluding the extremes and additionally cropping all pixel values above the 95th percentile
Pys. The clipping operation can be written as:

I, = min(I, P95), (21)

where I is the original pixel intensity and I’ is the clipped value.

e Standardization, centering each channel to zero mean and unit variance. Similar to min-max,
both global and 5%-trimmed versions were tested, with and without the optional clipping step of
Equation 21.

The decision to exclude the top 5 % of values comes from the distribution; a lot of outlier values are
present across the different channels, making the generalization harder for the model. The histograms
Figure 9 show that the majority of the values are scattered around 0, mean=0.12, and the 95th
percentile is equal to 0.46, when the max value is more than 2500. This small fraction of pixels would
have dominated during the scaling.
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4 Deep learning-based Methodology

This section presents the deep learning framework developed for this study. We first describe the U-
Net and Masked Autoencoder (MAE) architectures, along with the weight-transfer strategy used to link
them. Next, we detail the two-stage training methodology, which involves a self-supervised pretraining
phase and a subsequent supervised fine-tuning stage. Finally, we outline the data augmentation
techniques applied during training and the evaluation metrics used to assess the final segmentation
performance.

4.1 Deep Learning model used

To perform the data semantic segmentation, a U-Net architecture was used. We chose this
architecture as it is a widely used and trusted framework for image segmentation. It was primarily
designed to improve medical image analysis, making tumor detection in MRI scans easier. The U-Net
architecture has since been successfully applied to other fields. The architecture consists mainly of
two parallel branches: an encoder progressively reducing the spatial dimensions of the feature maps,
and a decoder restoring them to their original resolution. This process of reduction and expansion
compresses the information into a latent space, where the representation is more compact and optimal
for the task. By combining low-level features from the contracting path with high-level features from
the expansive path, the network is able to segment images at multiple scales. Skip connections, from
the encoder to the decoder, transfer spatial details, preserving fine-grained information and improving
segmentation accuracy. Figure 10 illustrates the model implemented with three input channels. The
implementation used is different from the original, because a batch normalization was added to speed
up the computation [18]. The number of input channels was varied in different experiments depending
on the input data representation used.

The encoder is composed of blocks built with two consecutive convolutional layers with 3 x 3
pixel kernel filters, followed by a batch normalization and a Rectified Linear Unit (ReLU) activation
function. These double convolution blocks progressively increase the number of filters while capturing
increasingly abstract features. Between each encoder block, in order to downsample the feature maps,
a 2 X 2 max pooling layer is applied, reducing the spatial resolution and expanding the receptive
field. After several double blocks, the bottleneck contains the largest number of filters, enabling the
extraction of the most abstract representation of the input data.

The decoder uses an upsampling layer to upscale the feature maps. This operation can be
performed using bilinear upsampling or transposed convolutions. The upsampling operation chosen for
our implementation is a transposed convolution. At each stage, the upsampled features are concatenated
with the corresponding feature maps from the encoder through skip connections and refined by another
double convolutional block. A final 1 x 1 convolutional layer and a softmax function are applied
to assign a probability to each pixel, enabling semantic segmentation of pixels based on the highest
predicted probability.

The current U-Net architecture mentioned was developed to learn through FSL; however, we want
to use a MAE that can be trained through SSL and then transfer its encoder weights to the U-Net
encoder. The schema Figure 11 illustrates this idea. But, in order to be able to transfer the weight
from one encoder to another, both should have the same structure. This constraint leads us to design
the following MAE Figure 12. The encoders are the same, and the decoding part is composed of
upsampling layers, transpose convolution, and double convolutional blocks. For the final layer, no
activation function was added to preserve the wide range dynamic of the coherency matrix.
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Figure 10 — U-Net architecture implemented to perform semantic segmentation. The schema was made
from an adaptation of the code [19]
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Figure 11 — Schema showing the weights transfer from the Masked Autoencoder (MAE) to the U-Net
model.
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Figure 12 — Masked Autoencoder architecture with similar encoder as the U-Net model implemented
to perform semantic segmentation. The schema was made from an adaptation of the code [19].

4.2 Training methodology

In the previous sections, the processing steps applied to the dataset and the architecture of the
different models have been described. The training methodology is now detailed in this subsection.

Self-supervised Learning (SSL)

For the pretraining stage, we opted for a MAE. The MAE framework was chosen because it provides
a simple and effective SSL. task, whereas alternative SSI. methods for SAR often involve complex
designs that are difficult to implement. The choice of the loss plays a crucial role in the model’s ability
to learn from the dataset, as it determines the type of backpropagation performed during training. In
case of regression, reconstruction of the input data, the MSE, or L?-norm error, is used and defined as :

N

1 N
MSE = N > (wi — 5)?, (22)
=1

where y; is the reference value and §; the model prediction, and N is the number of samples.

Masking was performed by randomly placing a fixed number of non-overlapping square masks of size
32 x 32 on 256 x 256 patches. The mask applied is different for each channel. Masked pixels were set to 0,
and reconstruction loss was computed only over the masked regions. Figure 13 shows an example of the
masking process applied with a masking rate of 40%. This forces the model to understand the context,
structure, and relationships of the surrounding data points rather than memorizing trivial patterns.
Empirical tests confirmed that restricting the loss to masked pixels yielded superior performance
compared to calculating it over the entire image.

The model was optimized using the Adam optimizer with an initial learning rate of 1 x 107%. A
cosine annealing scheduler was employed to gradually decrease the learning rate to a minimum of
1 x 1079 over the course of training. Since no labels were required for SSL pretraining, the dataset was
split into training (70%), validation (15%), and test (15%) sets independently of the predefined maze
split. Based on empirical evaluation, the batch size was set to 24, and the model was trained for 150
epochs.
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Original data mask Masked data

Figure 13 — Masking strategy for SSL: 32 x 32 squares are randomly placed on a 256 x 256 patch with
a masking rate of 40%.

Fully Supervised Learning (FSL)

For the semantic segmentation task, we utilized the Cross Entropy (CE) (Cross-Entropy) loss
function, which is the standard choice for multi-class, pixel-level classification problems. It is defined
as:

N C
CE =~ 33 i log(py) (23
N j=1

where N is the number of pixels, C' is the number of classes, y;; is the one-hot encoded ground-truth
label (1 if pixel ¢ belongs to class j, 0 otherwise), and p;; is the model’s predicted probability.

The models were fine-tuned for a maximum of 300 epochs, with an early stopping patience of 10
epochs. The learning rate was initialized to 1 x 1072 and coupled with a cosine annealing scheduler
that reduced it to a minimum of 1 x 10~°. The optimizer used was Adam, with a batch size of 24. For
this stage, we followed the dataset’s predefined maze partition: 40% for training, 10% for validation,
and 50% for testing.

4.3 Data augmentation implemented

Given the limited number of training samples (54 patches for training/validation and 54 for testing),
data augmentation was applied to improve generalization and mitigate the class imbalance during the
segmentation training. The following strategies were implemented:

e Geometric transformations: horizontal flip, vertical flip, and random 90° rotations.
e Noise injection: additive and multiplicative Gaussian noise to mimic acquisition variability.

e Random cropping and resizing: crops covering 60-100% of the image were randomly sampled
and then rescaled to the original size via bilinear interpolation.

e Channel drop: randomly zeroing out one or more input channels to enforce robustness to
missing information.

e CutMix: patch replacement with 128 x 128 or 64 x 64 regions cut from other training samples.

4.4 Metrics for performance evaluation

To assess segmentation quality, we utilized the Intersection over Union (IoU) metric, also known as
the Jaccard index [20], which effectively accounts for both false positives and false negatives. For a
predicted mask A and reference data mask B, IoU is calculated as:

|AN B

IoU = .
°U= 10

(24)
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From this, we can compute the mean Intersection over Union to provide a comprehensive performance
measure across all classes. This metric calculates the average of the IoU scores for each class, offering
a single, robust score that summarizes the overall segmentation quality. By averaging across classes,
mloU gives a more balanced assessment of the model’s ability to segment both common and rare
categories. It is defined as:

1 C
mloU = = 2::1 IoU.,, (25)

where C' is the total number of classes.
This approach ensures a fair comparison with the baseline results from the original dataset
publication [15].
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Table 3 — Acronyms defining the network training process.

GS Grayscale representation
3T Diagonal-only representation
log(3T) | Log-diagonal representation
9T Real-Imag decomposition
12T Extended log-ratio representation
raw Means that no normalization was
used.
Mm Min—max scaling
stand Standardization
5% Means that the normalization was
computed while excluding the top 5% of values.
5%C Means that the normalization was
computed while excluding the top 5% of values
and a cropping was applied on the data.

5 Results

In this section, we evaluate the impact of different input representations, normalization strategies,
and data augmentation techniques using the training methodology described in Section 4.2. Furthermore,
we compare the performance of the proposed SSL-based framework against a baseline model trained
from scratch without pretraining. Table 3 summarizes the acronyms used throughout this section to
refer to the various representations and normalization strategies.

All experiments were conducted on NVIDIA A100-SXM4-40GB GPUs. Due to the high variance
typically observed in deep learning training, each configuration was repeated 10 times using repeated
random splits: a train—validation—test split for the reconstruction task and a train—validation split
for the segmentation task. This approach provides a more robust estimate of variability. For models
requiring a pretraining step, the entire pretraining—finetuning pipeline was repeated 10 times; after each
pretraining run, the resulting MAE encoder was used once to initialize a U-Net and then discarded.

The following subsections present the impact of the different preprocessing steps, followed by a
comparison between the pretrained and non-pretrained models.

5.1 Impact of the Masking Rate

The masking ratio is a key hyper-parameter for MAE. To set an initial value, we qualitatively
examined reconstructions produced under a range of masking ratios. Figure 14 displays results obtained
with the extended log-ratio representation and full-dataset standardization at several masking ratios.
A 40% mask preserves fine structural detail while still compelling the model to infer missing regions;
lower ratios lead to overly trivial reconstructions. Consequently, we adopted a 40% masking ratio for
all subsequent experiments.

A quantitative evaluation was then conducted to assess the impact of this choice. The full training
pipeline (including pre-training of the MAE, transfer of encoder weights, and downstream fine-tuning)
was repeated ten times. For each run, the average Intersection over Union (IoU) and the associated
standard deviation were computed. To reduce variance, the analysis focused on two configurations
that had previously shown the best trade-off between mean performance and variability:

o Log-diagonal representation with min—max 5% trimmed normalization

o Extended log-ratio representation with standardized 5% trimmed normalization

As illustrated in Figure 15, quantifying the optimal masking rate is not straightforward due to the
high variance across runs. Nevertheless, the results indicate that a masking rate between 40% and 45%

29



@, INSTITUT
@ POLYTECHNIQUE
W DE PARIS

9
Prediction - Channel log10(T11 + 1) Masking rate 20 % F:remclw annel logl0(T11 1 MESkmg rate 40 %

- ol

Figure 14 — Visual comparison of the masking rate impact on the reconstruction task.

provides consistently above-average performance for both tested configurations. If the constraint of
maintaining a high masking rate is relaxed, masking rates between 20% and 25% also yielded reasonably
good results.

5.2 Impact of the Representation on the Model Performance

To evaluate the impact of the input representation, trainings were run for every representa-
tion—normalization combination described in Section 4. For each representation, we calculated the
mean and standard deviation of the IoU across all normalizations. The results are summarized in
Table 4.

The weakest performance was obtained with the grayscale representation, with mean IoU values of
11.78% (FSL) and 15.49% (SSL). This confirms that retaining only a single diagonal term discards
most of the polarimetric information, making the representation poorly suited for segmentation tasks.

At the other end of the spectrum, the extended log-ratio representation achieved the best results in
both FSL and SSL, with 23.79% and 32.19% respectively. This representation preserves both diagonal
and normalized cross terms while applying logarithmic scaling, improving information content and
numerical stability. The second-best performance was obtained with the log-diagonal representation,
reaching 21.91% (FSL) and 30.51% (SSL). Despite discarding off-diagonal terms, it outperformed the
real-imag decomposition (19.29% FSL, 23.46% SSL), suggesting that appropriate rescaling can be
more beneficial than retaining raw correlation terms.

Across all representations, SSL consistently improved performance compared to FSL. The largest
relative gains were observed for log-diagonal (+39%) and extended log-ratio (+35%), while grayscale
still benefited with a +31% improvement.
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Figure 15 — Average IoU as a function of the masking rate. Error bars indicate one standard deviation
across 10 independent simulations. Results are shown for the log-diagonal (min-max 5%-trimmed) and
extended log-ratio (standardized 5%-trimmed) representations.

Finally, SSL also reduced variability. For example, the log-diagonal standard deviation decreased
from 9.15% (FSL) to 4.25% (SSL, -54%), and grayscale dropped from 10.35% to 5.26% (-49%). This
demonstrates that SSL not only increases mean performance but also stabilizes results across runs.

12T 9T log(3T) 3T GS
FSL mean 23.785 19.288 21.906 17.22 11.782
std 9.15 7.7516 9.071 8.09 10.35
SSL mean 32.192 23.455 30.505 22.892 15.494
std 4.253 5.099 5.39 4.9558 5.258

Table 4 — Average IoU (mean =+ std) obtained for each representation, aggregated over all normalization
strategies.

5.3 Impact of the Normalization on the Performance

To evaluate the impact of normalization, the results were grouped by normalization technique, and
the mean and standard deviation of the IoU were computed across all representations. These results
are reported in Table 5.

The weakest normalization strategy was min—-max scaling on all data. In FSL, it achieved only
3.50% + 4.68%, compared to 13.28% =+ 10.34% with raw data. SSL also suffered under full min—max,
reaching 19.60% =+ 4.80% compared to 22.85% + 5.55% for raw data. This highlights how outliers
strongly distort min—max scaling.

The best performance was obtained with min—-max 5%-trimmed plus clipping (35.10% + 6.07%),
closely followed by standardization 5%-trimmed plus clipping (34.55% =+ 5.58%). While both strategies
reached similar average values, the latter was slightly more stable due to its lower variability.

Intermediate results were observed for standardization without clipping (23.03% FSL, 27.39% SSL)
and min-max 5%-trimmed (22.27% FSL, 26.45% SSL). These show that trimming outliers consistently
improves performance, even without clipping.
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Across all normalization strategies, SSL improved results relative to FSL. Gains were most pro-
nounced for weaker normalizations, such as min—max (+16.1%) and raw input (+9.6%). For the best
strategies, the gain was smaller but still positive, e.g., +5.0% for standardization 5%-trimmed plus
clipping. SSL also reduced variability: raw normalization decreased from 10.34% to 5.55% (-46%), and
standardization 5%-trimmed plus clipping from 12.42% to 5.58% (-55%).

raw Mm Mm 5% Mm 5%C stand stand 5% stand 5%C
FSL mean 13.278 3.503  22.266 19.090 23.030 24.676 29.553
std 10.338 4.678  10.575 15.578 10.572 7.980 12.417
SSL mean 22.846 19.600 26.446 35.097 27.385 21.260 34.550
std 5.550 4.804 6.487 6.070 5.726 7.675 5.575

Table 5 — Average IoU (mean + std) obtained for each normalization method, aggregated over all
representations.

5.4 Impact of Data Augmentation on the Model Performance

To evaluate the role of data augmentation (DA), we conducted experiments using the extended
log-ratio representation with standardized normalization. Six augmentation methods were tested:
horizontal flip, vertical flip, single-channel dropout, random crop with resizing, CutMix with 128 x 128
patches, and Gaussian noise injection A/(0,0.05%). In addition, the second flight path (FP2) was used as
a form of directional augmentation. Results without augmentation (FSL and SSL) served as reference.
Tables 6 and 7 summarize the results.

The weakest augmentation was Gaussian noise injection, which reduced mean IoU to 15.71% with
severe instability (CV of 1.38). This degradation was especially strong for water segmentation, which
dropped from 69.24% (SSL) to 35.30%.

The best augmentation method was CutMix with 128 x 128 patches, which achieved 34.87% mean
IoU. This nearly matched SSL performance (36.93%) while operating within the FSL framework.
CutMix was particularly effective for homogeneous classes such as settlements (86.80% + 4.08%) but
underperformed on complex classes like lower salt marsh (31.80% compared to 71.80% in SSL).

Intermediate results were obtained with random crop (28.24%, +6.53 percentage points over FSL
baseline), which shows balanced performance across different land cover types while maintaining
reasonable spatial coherence. Horizontal and vertical flips gave smaller gains, with vertical flip (26.56%)
outperforming horizontal flip (22.61%). Single-channel dropout and FP2 augmentation produced
marginal improvements (22.22% and 23.70%), with mixed results across classes.

As in the previous sections, SSL provided the strongest overall improvement, boosting mean IoU
from 21.71% (FSL) to 36.93% (415.22 points). It also reduced variability, with CV decreasing from
1.22 to 0.66. The effect was consistent across most classes, including large gains for water, grey dunes,
and settlements. However, rare classes such as peat bog and couch grass remained poorly segmented,
with ToU values below 1.1% regardless of augmentation.
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Table 6 — Performance metrics by class for simple data augmentation (Mean IoU + Std). Summary
statistics are reported at the bottom.

Class Horizontal Flip Vertical Flip CutMix 128 Random Crop
1. Tidal flat 7.82 £ 13.03 15.28 4+ 27.28 46.68 £ 33.16  41.59 £ 30.52
2. Water 49.05 £ 20.47 62.08 £9.76 73.22 £8.66 66.04 + 23.76
3. Coastal shrub 17.74 £ 13.02 25.75 + 12.29 25.04 £+ 18.18  20.79 + 13.38
4. Dense vegetation 18.64 £+ 12.60 12.40 +9.84  30.47 £ 7.35 19.31 £ 9.72
5. White dune 1.10 £ 1.70 0.35 + 0.43 0.52 + 0.78 0.55 + 1.26
6. Peat bog 0.17 £ 0.31 0.14 + 0.24 0.36 = 0.56 0.28 4+ 0.37
7. Grey dune 36.10 £ 20.50 33.43 £21.89 54.76 + 9.74  33.04 £+ 18.87
8. Couch grass 0.10 + 0.20 0.30 4+ 0.68 0.10 4+ 0.22 0.02 4+ 0.00
9. Upper salt marsh ~ 41.00 4+ 28.33  49.43 + 16.46 49.48 + 19.65 44.33 £+ 22.28
10. Lower sal marsh ~ 23.70 £ 22.55  41.70 &+ 17.79 31.80 £ 27.17 25.92 £ 20.10
11. Sand 7.63 £ 10.39 7.36 £5.91 19.15 £ 15.02 13.03 £ 16.48
12. Settlement 68.23 £+ 31.32 70.46 £ 19.48 86.80 + 4.08  73.96 £+ 25.28
Mean of means 22.61 26.56 34.87 28.24
Mean of std 16.23 11.84 12.05 15.17

Std of means 21.86 24.79 28.39 24.67
Mean CV 0.91 0.78 0.78 0.78

Table 7 — Performance metrics by class for targeted data augmentation and references (Mean IoU +
Std). Summary statistics are reported at the bottom.

Class SSL FSL Channel Drop Gaussian Noise FP2

1. Tidal flat 27.47 £ 23.77 19.57 £ 27.29  14.10 £+ 20.40 13.26 + 25.79 9.29 £ 22.15
2. Water 69.24 + 7.23 51.19 £+ 26.75 45.52 4+ 30.15 35.30 + 35.91  56.07 £+ 21.20
3. Coastal shrub 30.32 + 14.63 13.60 + 13.03 13.82 £ 15.62 14.18 £ 11.41  26.81 + 12.40
4. Dense vegetation 21.12 + 12.83 16.30 £ 13.89 19.58 4+ 13.43 8.00 £+ 9.84 8.82 4+ 8.83
5. White dune 1.47 £+ 3.87 0.46 + 0.93 0.36 4+ 0.90 0.41 4+ 0.78 2.84 + 4.26
6. Peat bog 0.08 4+ 0.00 0.10 + 0.17 0.99 + 2.26 0.21 £+ 0.36 0.59 + 1.34
7. Grey dune 60.40 + 8.53 29.20 + 21.01  30.80 + 25.10 20.06 + 22.50  42.41 + 16.81
8. Couch grass 0.11 £ 0.14 0.20 £ 0.60 0.39 £+ 0.78 0.04 £ 0.10 0.81 £ 1.20
9. Upper salt marsh  56.58 + 14.75 29.98 + 26.63 39.95 + 26.87 28.75 £ 29.37  19.07 4+ 22.83
10. Lower salt marsh 71.80 + 9.15 37.30 + 26.71 30.54 + 19.75 20.79 £+ 22.51 21.76 £+ 21.21
11. Sand 19.00 + 24.97 15.74 + 19.85 8.29 + 11.30 13.49 + 15.33 38.58 + 21.37
12. Settlement 85.56 + 5.25 46.83 £+ 30.05 62.25 4+ 37.99 34.02 + 34.87  57.39 £+ 24.04
Mean of means 36.93 21.71 22.22 15.71 23.70
Mean of std 10.43 17.24 17.05 17.40 14.80

Std of means 30.51 20.87 20.84 12.57 19.28
Mean CV 0.66 1.22 1.23 1.38 1.08
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Figure 16 — Comparison of segmentation maps obtained with different training strategies. SSL provides the
most accurate and stable results across all land cover classes. CutMix improves performance for homogeneous
classes but produces over-smoothed boundaries in complex ecological transitions. Random crop demonstrates
balanced segmentation performance with preserved spatial detail. Gaussian noise severely degrades performance
by introducing artifacts and misclassifications, while horizontal and vertical flips, and channel dropout yield
moderate improvements with variable class-dependent performance.
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6 Conclusion

This study investigated the potential of SSL to improve the semantic segmentation of PolSAR
imagery, particularly in scenarios with limited annotated data. The scarcity of labeled PolSAR
datasets—resulting from the need for expert knowledge and the unique conditions of each acquisition
campaign—poses a fundamental challenge to traditional supervised methods. To address this, we
developed a MAE) framework that leverages unlabeled data from the Pol-InSAR-Island coastal
monitoring dataset to learn meaningful feature representations. We demonstrated that transferring
these learned features significantly improves the performance of downstream segmentation tasks.

Our quantitative evaluation demonstrated that SSL pretraining systematically outperformed the
fully supervised baseline in all tested configurations. With an identical data processing pipeline
(extended log-ratio representation and standardized normalization), the SSL framework achieved a
mean Intersection over Union (IoU) of 36.93% compared to 21.71% for the baseline, a substantial
improvement of +15.22%. Beyond accuracy, SSL also enhanced training stability, reducing the coefficient
of variation across runs from 1.22 to 0.66. Our experiments confirmed that data representation and
normalization strategies are critical, with the extended log-ratio representation and a 5%-trimmed
standardization with clipping yielding optimal results. These findings show that SSL enables the
extraction of robust, transferable features that are less sensitive to specific processing choices, thereby
reducing the reliance on handcrafted pipelines.

Comparison with data augmentation techniques showed that CutMix was the most effective method
(34.87% mean IoU), nearly matching the SSL results. However, SSL maintained superior performance
for complex classes with heterogeneous boundaries, such as lower salt marsh (71.80% vs. 31.80% for
CutMix). This demonstrates that pretraining provides more robust feature representations than data
augmentation alone.

For future work, several limitations should be acknowledged. The quantitative evaluation of the
masking rate was conducted after feature selection, which could introduce bias; a more systematic
exploration of this hyperparameter is warranted. Furthermore, our best-performing model achieved
a strong mean IoU of 50.2% using a single-frequency polarimetric approach. This result can be
contextualized by the original benchmark study, which reached 67% mean IoU by leveraging a multi-
modal dataset combining both S and L-band data with interferometric information [15]. This highlights
a clear path forward: applying this SSL pretraining framework to the full multi-modal dataset may
help bridge this performance gap.

Finally, future research could explore pretext tasks better suited to the unique challenges of PolSAR
data. Given the presence of speckle, reconstructing raw pixel values may be suboptimal. A more
powerful approach, inspired by recent work in SAR analysis that reconstructs abstract features instead
of pixels [14], involves recovering physically meaningful representations. Therefore, designing a pretext
task to recover polarimetric scattering mechanisms [9] is a particularly promising direction, as it would
compel the model to learn features grounded in physical properties, making them inherently more
robust to noise.
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