elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

BayeSiamMTL: Uncertainty-aware multitask learning for post-disaster building damage assessment

Hertel, Victor und Wani, Omar und Geiß, Christian und Wieland, Marc und Taubenböck, Hannes (2025) BayeSiamMTL: Uncertainty-aware multitask learning for post-disaster building damage assessment. International Journal of Applied Earth Observation and Geoinformation, 143, Seiten 1-12. Elsevier. doi: 10.1016/j.jag.2025.104759. ISSN 1569-8432.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
3MB

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S1569843225004066

Kurzfassung

Accurate and timely building damage assessment (BDA) is critical for effective disaster response and recovery. However, existing machine learning approaches in this context do mostly not account for uncertainties, which are essential for ensuring trustworthy and transparent results. This study introduces a hybrid Bayesian deep learning framework with integrated uncertainty quantification to enhance BDA, thereby making model predictions more reliable and interpretable. We propose BayeSiamMTL, a novel Bayesian Siamese multitask learning architecture that combines deterministic segmentation of building footprints with probabilistic change detection for damage level classification. By encoding model parameters as probability distributions and utilizing variational inference with Monte Carlo approximation, BayeSiamMTL produces pixelwise posterior predictive distributions, providing detailed insights into both damage predictions and their associated uncertainties. Our analysis explores key aspects of Bayesian modeling and, to our knowledge, is the first to provide quantified insights into the model’s classification dynamics, revealing internal decision-making tendencies and sources of uncertainty. Additionally, we introduce confidence-informed damage maps in the form of stratified probabilities of damage clusters and minimum/maximum damage extents delineated from confidence intervals. Model performance is evaluated across multiple datasets to assess the impact of domain shifts and out-of-distribution samples. Experimental results show that BayeSiamMTL not only achieves a performance advantage over its deterministic counterpart but also exhibits significantly better generalization capabilities under domain shifts with a relative performance improvement of 42 %. While background pixels represent the primary source of confusion across all damage levels, our findings indicate that building destructions are more frequently confused with intact buildings rather than among varying degrees of damage.

elib-URL des Eintrags:https://elib.dlr.de/215999/
Dokumentart:Zeitschriftenbeitrag
Titel:BayeSiamMTL: Uncertainty-aware multitask learning for post-disaster building damage assessment
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hertel, VictorVictor.Hertel (at) dlr.dehttps://orcid.org/0000-0002-9207-7632NICHT SPEZIFIZIERT
Wani, OmarNew York UniversityNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Geiß, ChristianChristian.Geiss (at) dlr.dehttps://orcid.org/0000-0002-7961-8553NICHT SPEZIFIZIERT
Wieland, MarcMarc.Wieland (at) dlr.dehttps://orcid.org/0000-0002-1155-723XNICHT SPEZIFIZIERT
Taubenböck, HannesHannes.Taubenboeck (at) dlr.dehttps://orcid.org/0000-0003-4360-9126NICHT SPEZIFIZIERT
Datum:September 2025
Erschienen in:International Journal of Applied Earth Observation and Geoinformation
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:143
DOI:10.1016/j.jag.2025.104759
Seitenbereich:Seiten 1-12
Verlag:Elsevier
ISSN:1569-8432
Status:veröffentlicht
Stichwörter:Building damage assessment; Uncertainty quantification; Bayesian deep neural network; Semantic segmentation; Rapid disaster response; Crisis information management
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung, R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Hertel, Victor
Hinterlegt am:01 Sep 2025 10:36
Letzte Änderung:04 Sep 2025 10:28

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.