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A B S T R A C T

Accurate and timely building damage assessment (BDA) is critical for effective disaster response and recovery. 
However, existing machine learning approaches in this context do mostly not account for uncertainties, which 
are essential for ensuring trustworthy and transparent results. This study introduces a hybrid Bayesian deep 
learning framework with integrated uncertainty quantification to enhance BDA, thereby making model pre
dictions more reliable and interpretable. We propose BayeSiamMTL, a novel Bayesian Siamese multitask learning 
architecture that combines deterministic segmentation of building footprints with probabilistic change detection 
for damage level classification. By encoding model parameters as probability distributions and utilizing varia
tional inference with Monte Carlo approximation, BayeSiamMTL produces pixelwise posterior predictive dis
tributions, providing detailed insights into both damage predictions and their associated uncertainties. Our 
analysis explores key aspects of Bayesian modeling and, to our knowledge, is the first to provide quantified 
insights into the model’s classification dynamics, revealing internal decision-making tendencies and sources of 
uncertainty. Additionally, we introduce confidence-informed damage maps in the form of stratified probabilities 
of damage clusters and minimum/maximum damage extents delineated from confidence intervals. Model per
formance is evaluated across multiple datasets to assess the impact of domain shifts and out-of-distribution 
samples. Experimental results show that BayeSiamMTL not only achieves a performance advantage over its 
deterministic counterpart but also exhibits significantly better generalization capabilities under domain shifts 
with a relative performance improvement of 42 %. While background pixels represent the primary source of 
confusion across all damage levels, our findings indicate that building destructions are more frequently confused 
with intact buildings rather than among varying degrees of damage.

1. Introduction

In recent decades, machine learning (ML) techniques have become 
indispensable across various scientific disciplines and practical appli
cations. These technological advances have also transformed the process 
of post-disaster building damage assessment (BDA) from air- and 
spaceborne remote sensing data. The extent of building damage is a 
critical indicator of disaster impact, offering important insights into the 
affected population and the economic damage (Geiß et al., 2023). 
Consequently, timely and accurate assessments are essential for effective 
disaster response and humanitarian assistance. While in-situ surveys 

remain fundamental, the acquisition of supplementary information has 
shifted from manual inspection of aerial imagery to sophisticated, data- 
driven ML approaches (Deng and Wang, 2022; Ge et al., 2023). In 
particular, deep learning has emerged as a powerful tool for automating 
the detection and quantification of building damage, enabling rapid 
assessments that generally surpass the accuracy and efficiency of 
traditional methods (Zheng et al., 2021; Ge et al., 2020).

As deep neural networks (DNNs) become more prevalent, ensuring 
confidence in their predictions becomes crucial, especially in safe
ty–critical applications such as rapid disaster response and crisis infor
mation management. In these contexts, map-based information derived 
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from ML methods plays a key role in guiding urgent decisions where 
incorrect or misinformed actions can have severe consequences. This 
applies specifically to the context of BDA, since the extent of damage to 
buildings stands out as a key indicator of disaster impact, directly 
influencing resource allocation, relief strategies, and guidance of rescue 
teams toward the affected population. Misestimation or inadequate 
handling of uncertainty in damage assessments can result in the misal
location of limited resources, delayed interventions, and increased fa
talities. Therefore, trustworthy representations of uncertainty should be 
considered a key feature of any ML-based BDA algorithm (Hüllermeier 
and Waegeman, 2021). However, conventional deterministic DNNs 
typically encode model parameters as single values and thus fail to 
provide reliable measures of uncertainty, leading to either over
confidence or underconfidence in their predictions (Gawlikowski et al., 
2023). To overcome this constraint, it is vital to equip DNNs with 
mechanisms that quantify uncertainty, ensuring that predictions flagged 
as highly uncertain receive further scrutiny or are deferred to human 
experts (Gal and Ghahramani, 2016).

Predictive uncertainty generally arises from two main sources: 
epistemic (systematic) uncertainty and aleatoric (statistical) uncer
tainty. Epistemic uncertainty stems from limited knowledge and can be 
reduced by improving model design or training data. In contrast, alea
toric uncertainty arises from inherent variability in the data and cannot 
be eliminated (Kendall and Gal, 2017; Kiureghian and Ditlevsen, 2009). 
Numerous uncertainty quantification (UQ) techniques have been 
developed to enable DNNs to assess the reliability of their outputs. These 
techniques can be grouped according to whether they rely on single or 
multiple networks, and whether those networks are deterministic or 
probabilistic in nature. Ensemble methods, for instance, involve multi
ple deterministic networks and combine their predictions to leverage 
their collective diversity for uncertainty estimation (Lakshminarayanan 
et al., 2017). Test-time augmentation techniques, on the other hand, rely 
on a single deterministic model and apply various augmentations to the 
input data during inference in order to produce multiple predictions 
(Shorten and Khoshgoftaar, 2019). Another category includes single 
deterministic networks that make predictions via one single forward 
pass. Here, uncertainty is either quantified by external methods or 
directly predicted by the network (Malinin and Gales, 2019, 2018). 
Finally, Bayesian methods employ probabilistic DNNs, where condi
tional probability distributions over model parameters yield slightly 
different results across multiple forward passes. This integrated, scal
able, and resource-efficient approach to capturing predictive uncer
tainty makes Bayesian methods especially well-suited for applications in 
the remote sensing domain (Gal and Ghahramani, 2016; Mobiny et al., 
2021).

Within the Bayesian framework, all inference about unknown 
quantities involves computing posterior distributions (Blei et al., 2017). 
This process typically begins with assuming a prior distribution over 
model parameters and subsequently applies Bayes’ theorem to estimate 
their posterior distributions (Jospin et al., 2022). Since computing the 
exact posterior is intractable, variational inference techniques approxi
mate it by optimizing over a set of more tractable distributions 
(Gawlikowski et al., 2023). For instance, Blundell et al. (2015) intro
duced Bayes by Backprop, a backpropagation-compatible algorithm that 
learns a probability distribution over DNN weights. Nevertheless, 
defining meaningful weight priors remains challenging, especially for 
deep architectures with high-dimensional weight spaces. To address this 
challenge, Krishnan et al. (2020) proposed MOPED (model priors with 
empirical Bayes using DNN) to determine more informed weight priors 
for Bayesian DNNs. Another widely used technique for approximating 
the posterior distribution is Monte Carlo (MC) dropout. Dropout 
randomly deactivates certain model neurons during training to improve 
generalization and reduce co-tuning (Abdar et al., 2021). When applied 
both during training and inference, dropout acts as an approximate 
Bayesian variational inference method for deep Gaussian processes (Gal 
and Ghahramani, 2016; Kingma et al., 2015). However, Hertel et al. 

(2023) found that MC dropout can yield overconfident prediction in
tervals, whereas Bayesian variational inference is generally more flex
ible in learning both the mean and the spread of the parameter posterior.

In disaster response and humanitarian assistance, decisions often 
must be made under considerable uncertainty. In these high-stakes 
settings, reliable uncertainty estimation is essential for guiding rapid 
assessments that inform intervention strategies responsibly. Current ML- 
based BDA approaches generally fall into two categories: cascade-based 
and multitask network architectures. In cascade-based strategies, 
building localization is performed on pre-disaster imagery, and the 
resulting footprints are subsequently used to support damage assessment 
in post-disaster scenes. However, treating these tasks independently can 
introduce knowledge gaps by overlooking interdependencies (Zheng 
et al., 2021). To address these limitations, recent studies (Gholami et al., 
2022; Hao et al., 2021) have proposed Siamese networks that perform 
bi-temporal building localization alongside integrated damage classifi
cation. Despite this progress, existing methods remain almost exclu
sively deterministic and lack comprehensive uncertainty quantification. 
Meanwhile, Bayesian approaches to uncertainty quantification have 
been successfully applied in various fields, including remote sensing 
(Dera et al., 2020; Hertel et al., 2023; Lee and Li, 2024; Zhang and Diao, 
2023) and medical applications (Herzog et al., 2020; Thiagarajan et al., 
2022). Within the specific context of BDA, Bin et al. (2022) employed 
Monte Carlo dropout for uncertainty estimation, although their method 
primarily relied on variance as the sole measure of predictive uncer
tainty. There remains a gap in statistically sound quantification and 
advanced Bayesian evaluation of uncertainties within the context of 
BDA. Additionally, despite emergency response scenarios necessitating 
lightweight and computationally efficient solutions, many state-of-the- 
art BDA studies leverage complex and extensively parameterized 
models optimized specifically for particular datasets (Chen et al., 2024; 
Kaur et al., 2023; Yu et al., 2025). Consequently, the practical deploy
ment of such complex and tailored models in emergency response con
texts faces significant challenges related to generalization capabilities 
and computational demands (Hertel et al., 2025).

In this paper, we introduce BayeSiamMTL, a novel Bayesian Siamese 
multitask learning architecture that fuses deterministic binary semantic 
segmentation with probabilistic multiclass change detection. This inte
grated design enables the model to simultaneously identify bi-temporal 
building footprints and evaluate their corresponding damage levels with 
variational inference-based UQ. BayeSiamMTL is optimized for efficient 
operation on large datasets and facilitates effective and transparent 
building damage assessment in humanitarian disaster response. We 
explain the belonging Bayesian statistical framework to derive and 
interpret posterior predictive distributions (PPDs) on a pixel-level. Based 
on these distributions, we analyze key aspects of Bayesian modeling, 
including the number of MC samples required for PPD convergence and 
the influence of probabilistic parameter initialization. To our knowl
edge, this study is the first to provide quantified insights into the model’s 
classification dynamics, revealing internal decision-making tendencies 
and sources of confusion based on approximately 235 billion pixel 
evaluations. Furthermore, we evaluate the model performance across 
multiple datasets to assess the impact of domain shifts and out-of- 
distribution (OOD) samples in the Bayesian framework. Finally, we 
propose confidence-informed damage maps that leverage predictive 
posteriors to produce integrated prediction-certainty visualizations. 
These maps provide disaggregated and stratified probabilities of distinct 
damage clusters as well as the minimum and maximum extents of 
building damage delineated from confidence intervals.

The structure of this paper is as follows. Section 2 describes the 
datasets and pre-processing steps. Section 3 elaborates on the proposed 
methods. Results and findings are presented in Section 4. Section 5
contains the discussion and Section 6 concludes the paper.
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2. Data

Building damage assessment can be separated into two sequential 
tasks: building segmentation and damage level classification. In this 
study, multiple datasets specific to each task are used. By integrating 
data from diverse spatial resolutions, geographical contexts, and disaster 
events, we aim to provide a comprehensive basis for robust model 
training and uncertainty quantification.

2.1. Building segmentation

OpenEarthMap (OEM) is a comprehensive dataset designed for 
global high-resolution land cover mapping (Xia et al., 2023). It com
prises 2.2 million annotated segments derived from 5,000 air- and 
spaceborne images, spanning 97 regions across 44 countries on 6 con
tinents. The dataset provides manually annotated land cover labels 
across eight classes, with a ground sampling distance (GSD) ranging 
from 25 cm to 50 cm. We use the class ‘building’ to train the building 
segmentation module of BayeSiamMTL.

2.2. Building damage classification

Damage severity is typically assessed using ordinal classification 
scales, which rely on qualitative descriptors that must be precisely 
defined to differentiate highly heterogeneous damage patterns. This 
challenge has spurred the development of hazard-specific frameworks 
such as the European Macroseismic Scale 1998 (EMS-98) for earthquake 
damage. Yet, no universally recognized standard currently exists for 
remote sensing-based BDA (Cotrufo et al., 2018). In this context, Hertel 
et al. (2025) proposed a framework that harmonizes damage descriptors 
from both engineering and remote sensing domains, aligning them with 
internationally accepted standards. The classification scheme in Table 1
is adopted in the present study to ensure consistency and interopera
bility across different datasets.

2.2.1. xBD dataset
The xBD dataset is one of the largest publicly available resources for 

assessing building damage using satellite imagery (Gupta et al., 2019). It 
provides annotations for over 850,000 buildings across more than 

45,000 km2 of remote sensing imagery, at a GSD of 80 cm. Covering pre- 
and post-disaster imagery from 19 distinct events, xBD serves as the 
primary training source for the damage classification module of Baye
SiamMTL. The official test split of the corresponding xView2 challenge 
consists of 10 initially published events (tier1). During the challenge, an 
additional nine events (tier3) were made available. In order to obtain 
representative results and assess generalization capabilities, we create a 
new dataset split which fills up the official xView2 test set such that 20 % 
of the data per event is used for testing. This data split can be found in 
the Supplementary materials. For comparison across different studies, 
results are also reported using the original xView2 test split. Following 
Hertel et al. (2025), the ‘Minor damage’ and ‘Major damage’ categories 
are combined into a single ‘Damaged’ category to maintain consistency 
with the above-mentioned classification scheme.

2.2.2. Ahr valley dataset
In 2021, Europe experienced catastrophic flood events that caused 

extensive damage to its built environment and significant harm to the 
population. This event is regarded as one of the most lethal European 
flood events in nearly three decades and among the costliest on record 
(Szymczak et al., 2022). In response, the German Aerospace Center 
(DLR) conducted an aerial survey of the severely impacted Ahr valley in 
Germany, capturing post-disaster RGB imagery at a spatial resolution of 
7 cm GSD. Building on this data, Hertel et al. (2025) introduced a bi- 
temporal BDA dataset by integrating pre-disaster aerial imagery with 
a 20 cm GSD and annotating nearly 10,000 buildings. This dataset is 
used to assess the impact of domain shifts and out-of-distribution 
samples.

2.3. Pre-processing

All imagery is normalized using the mean and standard deviation per 
channel of the entire respective dataset. The data is then divided into 
non-overlapping tiles of 256 × 256 pixels. To increase data volume and 
minimize boundary artefacts, a second layer of identically sized tiles is 
generated, offset by 128 pixels in both the vertical and horizontal di
rections. This offset creates overlapping regions between adjacent tiles, 
thereby preserving contextual continuity at the tile boundaries and 
centering edge features within neighboring tiles. To address the reso

Table 1 
Engineering-based building damage classification criteria with remote sensing data (Hertel et al., 2025).

Damage Description

Structural Non-structural

No visible damage None None
• Structure appears to have complete structural integrity
• Walls remain standing
• Roof is virtually undamaged

Damaged

None Light • Only wetting through
• Dirt

Light Moderate
• Light cracking to loadbearing walls
• Doors and windows pushed in
• Washing out of foundations

Moderate Heavy
• Larger cracking in loadbearing walls and slabs
• Settlement
• Collapse of non-loadbearing walls

Destroyed
Heavy Very heavy • Collapse of loadbearing walls, slab

Very heavy Very heavy • Collapse of larger parts of building
• Dislocation: building completely washed away, toppled or displaced from foundation

Invalid − − • Uncertain interpretation due to image quality (e.g. shadow or degraded resolution due to high off-nadir angle)
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lution discrepancy between pre- and post-disaster imagery in the Ahr 
valley dataset, the post-disaster imagery is resampled to a GSD of 20 cm 
to match the pre-disaster imagery.

3. Methods

3.1. Model setup and training procedure

In this study, we present BayeSiamMTL, a novel Bayesian Siamese 
multitask learning architecture that integrates deterministic binary 
segmentation with probabilistic multiclass change detection. As illus
trated in Fig. 1, BayeSiamMTL employs two deterministic, weight- 
shared UNets to segment building footprints from pre- and post- 
disaster images. The segmented patches are subsequently processed by 
a Bayesian Siamese difference-based decoder, which performs 

probabilistic damage level classification. By encoding the segmentation 
task deterministically, the model ensures that its probabilistic UQ ca
pabilities are exclusively focused on the damage level classification task, 
eliminating any interference from building localization. This design 
aligns with emergency response priorities, where accurately identifying 
damage severity is more critical than precisely delineating building 
contours. Training is conducted in two sequential stages to enhance 
efficiency and optimize task-specific performance. In the first stage, the 
building segmentation modules are trained using the OEM dataset. In 
the second stage, the damage classification module is trained on the xBD 
dataset. Once the segmentation training is complete, the outputs of the 
Bayesian Siamese decoder are masked using the pre-disaster building 
footprints. This approach ensures that predictions are focused on exist
ing structures, effectively eliminating changes unrelated to buildings. 
After the initial sequential training, BayeSiamMTL can be further 

Fig. 1. Bayesian Siamese multitask learning architecture (BayeSiamMTL). The two weight-shared UNets with point estimate model parameters (highlighted in grey) 
simultaneously segment building footprints from pre- and post-disaster imagery. The Bayesian Siamese difference-based decoder with probability distributions as 
model parameters (highlighted in purple) classifies damage levels probabilistically based on the segmented patches.
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adapted to new domains via multitask fine-tuning. Implementation de
tails are given in Section 3.5.

3.2. Experimental setup

To benchmark and compare performance with conventional BDA 
models, BayeSiamMTL is evaluated against a purely deterministic 
counterpart that retains the same architecture but employs only deter
ministic layers (1, Table 2). This deterministic baseline is trained 
sequentially as described in Section 3.1. To address the challenge of 
Bayesian weight initialization, two scenarios are considered: random 
weight initialization (2) and advanced weight initialization using 
MOPED (3). The probabilistic baseline (2) is again trained sequentially. 
For Experiment 3, the probabilistic weights in the Bayesian layers are 
initialized with parameters from the previously trained deterministic 
model (1). This initialization is followed by multitask fine-tuning to 
refine the Bayesian layers, enabling the model to leverage prior 
knowledge while effectively adapting to the probabilistic task and 
capturing predictive uncertainties.

3.3. Bayesian deep neural networks and variational inference

In conventional deep learning, model parameters θ = (w1,⋯,wK) are 
optimized by maximizing the likelihood of the observed data or, 
equivalently, minimizing a corresponding loss function. These methods 
typically handle model parameters as point estimates, which do not 
capture the inherent uncertainties in the model, data, and parameter 
estimation (Gawlikowski et al., 2023). Bayesian DNNs address this 
limitation by describing model parameters as probability distributions 
rather than fixed values. These distributions encode aggregated un
certainties about the parameters and allow the model to quantify its 
confidence. In Bayesian DNNs, during each forward pass, the model 
parameters θ are sampled from their respective posterior distributions. 
This stochastic sampling leverages the diversity of outputs generated 
across multiple forward passes for robust uncertainty estimation and 
improved generalization (Hüllermeier and Waegeman, 2021). Fig. 2 il
lustrates the distinction between deterministic and probabilistic con
volutional layers in BayeSiamMTL, and demonstrates how an example 
input image is processed through each variant.

Given a training input-target pair (x, y), the posterior distribution 
over the space of parameters p(θ|x, y) represents the updated belief 
about θ after observing the training data (x, y). This posterior is obtained 
by assuming a prior distribution p(θ) over the model parameters θ and 
then applying Bayes’ theorem: 

p(θ|x, y) =
p(y|x, θ)⋅p(θ)

p(y|x)
∝ p(y|x, θ)⋅p(θ) (1) 

Here, the prior distribution p(θ) represents prior beliefs about θ 
before observing (x, y). The likelihood p(y|x, θ) quantifies how well the 
model with parameters θ explains the observed data (x, y). The evidence 
p(y|x) acts as a normalization constant to ensure that the posterior dis
tribution integrates to one. It aggregates over all possible values of θ, 
weighted by their prior probabilities, to capture the full range of plau
sible parameter values consistent with the observed data (Gawlikowski 
et al., 2023). The evidence is defined as: 

p(y|x) =
∫

p(y|x, θ)⋅p(θ)dθ (2) 

The posterior distribution p(θ|x, y) is generally intractable due to the 
high dimensionality and complex nature of DNNs. To address this 
challenge, variational inference is commonly employed as an approxi
mation technique. Variational inference approximates the true posterior 
p(θ|x, y) with a simpler, parameterized distribution q(θ). This is achieved 
by minimizing the Kullback-Leibler (KL) divergence KL(q(θ)‖p(θ|x, y) ). 
Since the true posterior p(θ|x, y) depends on the intractable evidence 
p(y|x), direct computation of the KL divergence is not feasible. Instead, 
the evidence lower bound (ELBO) function is optimized, which is 
equivalent to the KL divergence up to a constant (Abdar et al., 2021; 
Graves, 2011).

3.4. Bayesian model averaging and Monte Carlo approximation

Once the posterior distribution over the space of parameters p(θ|x, y)
has been approximated, predictions y* for new, unseen data x* can be 
made by calculating the posterior predictive distribution (PPD) 
p(y*|x*, x, y). This distribution accounts for the uncertainty in the 
model’s prediction, capturing both the variability in the model param
eters θ and the data (Lynch, 2005). The posterior predictive distribution 
can be obtained through Bayesian model averaging, which involves 
marginalizing the likelihood p(y|x, θ) over the posterior distribution of 
the model parameters: 

p(y*|x*, x, y) =
∫

p(y*|x*, θ)⋅p(θ|x, y)dθ (3) 

The posterior predictive distribution p(y*|x*, x, y) represents the 
likelihood of the prediction y* given the new input x* and the model 
parameters θ. The uncertainty about the model parameters θ given the 
training data (x, y) is reflected by the posterior distribution p(θ|x, y).

Since the integral in (3) is typically intractable for the most common 
prior-posterior pairs, approximation techniques such as Monte Carlo 
approximation are employed (Gawlikowski et al., 2023). According to 
the law of large numbers, the expected values of the PPD can be 
approximated by the mean of the predictions from N stochastic models, 
fθ1 , ⋯, fθN , each parameterized by samples θ1,⋯, θN drawn from the 
posterior distributions of the model parameters. The estimate will 
become more accurate as the value of N increases. This yields the 
following approximation: 

y* ≈
1
N

∑N

i=1
y*

i =
1
N

∑N

i=1
fθi (x

*) (4) 

Fig. 3 illustrates the probabilistic outputs of a Bayesian DNN in the 
context of building damage assessment. The histograms show the dis
tributions of softmax outputs for a single pixel across 100 MC samples. In 
contrast to deterministic models, which yield a single, constant softmax 
vector per pixel regardless of repeated evaluations, the Bayesian 

Table 2 
Overview of the experimental setup.

Experiment OEM xBD Mode

(1) Deterministic baseline ✓ ✓ Sequential training
(2) Probabilistic baseline ✓ ✓ Sequential training
(3) MOPED based on (1) £ ✓ Multitask fine-tuning

Fig. 2. Input with exemplary pixel values and corresponding output, resulting 
from i) a deterministic CNN filter with point estimates (highlighted in blue), 
and ii) a probabilistic CNN filter with probability distributions over weights.
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framework produces varying softmax outputs for the same pixel across 
multiple forward passes. This variability directly captures the predictive 
uncertainty associated with the pixel’s classification. The rightmost 
column shows the PPD, which is computed using Monte Carlo approx
imation and the respective Bayesian equation in (4). The damage class 
with the highest posterior predictive probability (PPP) is selected as the 
classification output, while dispersions in the PPD serve as a measure to 
quantify the predictive uncertainty. Fig. 3a illustrates a pixel correctly 
classified as ‘Damaged’. In this case, the MC output distribution for 
‘Damaged’ exhibits a probability mass concentrated toward higher 
confidence, whereas distributions for the incorrect classes shift toward 
lower probabilities. These observations are reflected and quantified in 
the respective PPD. In contrast, Fig. 3b shows a ‘Destroyed’ pixel that 
has been misclassified as ‘Background’. Here, the MC output distribu
tions are slightly more dispersed, reflecting the uncertainty in the 
model’s prediction.

3.5. Implementation details

BayeSiamMTL is implemented in PyTorch, utilizing the open-source 
BayesianTorch library (Krishnan et al., 2022) for the Bayesian Siamese 
decoder. A notable challenge in employing probabilistic weights arises 
from the similarity of weights drawn within a mini-batch, which con
strains the variance reduction effect of larger batches. To overcome this 
limitation, the Flipout estimator (Wen et al., 2018) is employed, 
providing effective variance reduction by pseudo-independently sam
pling weights for each individual sample.

The probabilistic decoder processes the latent tensors derived from 
two input images and calculates their element-wise differences at the 
bottleneck level. This difference-based design enables the network to 
explicitly focus on scene changes, which is critical in BDA tasks. The 
resulting feature maps are subsequently upsampled to the original image 
resolution, producing a pixel-wise damage classification map via a 
multi-class softmax activation function. Model training leverages the 
Bayes by Backprop algorithm (Blundell et al., 2015), in combination 
with the Adam optimizer, to minimize the evidence lower bound 
(ELBO). The ELBO loss includes a cross-entropy term for damage clas
sification accuracy and a scaled KL divergence term that regularizes the 
variational posterior (see Section 3.3 for details). Bayes by Backprop 
integrates variational inference into standard backpropagation, 
enabling efficient, tractable approximation of the posterior distribution 
over model weights by iteratively updating the variational parameters.

All hyperparameters employed in this study (cf. in Table 3) are 
determined through preliminary experiments. Section 4.1 provides an 
in-depth analysis of the influence of the number of MC samples. A 
standard normal prior, N(0, 1), is commonly adopted in Bayesian deep 
learning and has been found to provide the best balance between weight 

initialization and weight exploration (LaBonte et al., 2020). Early 
stopping criteria and batch sizes are chosen to optimize computational 
efficiency within the constraints of available hardware resources. To 
ensure consistency and reproducibility across experiments, random 
seeds are fixed for all stochastic processes, and deterministic algorithms 
are enforced in PyTorch. Experiments are performed on a Dell Precision 
5820 Tower equipped with 64 GB RAM, an Intel Xeon W-2235 CPU, and 
an NVIDIA RTX A4000 GPU.

3.6. Accuracy assessment

The F1 score is a widely used metric for evaluating performance in 
BDA. In this study, both the weighted Fweighted

1 score and the macro- 
averaged Fmacro

1 score are computed based on an aggregated confusion 
matrix. The Fweighted

1 score accounts for class imbalance by weighting the 
contribution of each class according to its prevalence. In contrast, the 
Fmacro

1 score treats all classes equally, regardless of their frequency, 
ensuring that equal importance is assigned to all damage levels. This 
dual evaluation approach provides a comprehensive assessment of the 
models’ performance, capturing both their ability to handle imbalanced 
datasets and their capacity to detect rare but critical damage levels. 
Additionally, class-wise F1 scores are reported to provide a more 
detailed analysis of the models’ performance for individual classes. For 
probabilistic outputs, the class with highest probability of the PPD, i.e. 
the highest posterior predictive probability (PPP), determines the 
prediction.

4. Results

4.1. Learning behavior on xBD

An important yet often overlooked hyperparameter for Bayesian 

Fig. 3. Probabilistic output of BayeSiamMTL with the respective posterior predictive distribution (PPD): (a) shows a correctly classified ‘Damaged’ pixel. (b) shows a 
‘Destroyed’ pixel incorrectly classified as ‘Background’.

Table 3 
Hyperparameters and model setup.

Parameter

Initial learning rate 1× 10− 3

Learning rate decay 0.5 / 5 epochs validation loss stagnation
Maximum epochs 50 per task
Early stopping After 10 epochs validation loss stagnation
Batch size 16
Optimizer Adam (β1 = 0.9, β2 = 0.999)
Prior distribution N(0, 1)
Monte Carlo samples 100
MOPED perturbation δ 0.5
Seed 11
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DNNs is the number of MC samples needed to ensure reliable pre
dictions. Fig. 4a illustrates the average and class-specific F1 scores as a 
function of MC samples, plotted as solid lines. A relative convergence 
criterion is defined as |xk+1 − xk |

|xk |
< δ, where xk and xk+1 represent values 

from consecutive iterations, and δ = 1× 10− 3. The F1 scores meet the 
convergence criterion after seven MC samples. However, accuracy 
metrics only require convergence of the highest PPP, as this determines 
the predicted class. For reliable uncertainty quantification, convergence 
of the whole PPD is required. The dotted lines in Fig. 4a illustrate how 
the KL divergence of the PPDs decreases as the number of MC samples 
increases. The convergence criterion for the KL divergence is met after 
82 MC samples. For this analysis, KL divergence is calculated pixelwise 
and averaged over the entire test split of the xBD dataset. All calculations 

are performed for up to 200 MC samples, ensuring a robust convergence 
assessment of both classification accuracy and uncertainty quantifica
tion. ‘Invalid’ pixels are excluded from Fig. 4 as they are not present in 
the xBD dataset.

Based on these insights, the experiments in Table 2 are conducted 
with each training epoch being evaluated using 100 MC samples. Fig. 4b 
illustrates the progression of the average and class-specific F1 scores 
during classification training (Experiments 1 and 2) and multiclass fine- 
tuning (Experiment 3). The deterministic baseline model is represented 
by dotted lines (Experiment 1), BayeSiamMTL with random weight 
initialization by dashed lines (Experiment 2), and BayeSiamMTL with 
MOPED-based weight initialization by solid lines (Experiment 3). The 
results show that the deterministic baseline model accumulates slightly 
more knowledge compared to its probabilistic counterpart, with the 

Fig. 4. Average and class-specific learning behavior: (a) illustrates the convergence of F1 scores (solid) and KL divergence (dotted) as the number of Monte Carlo 
(MC) samples increases. The epoch of convergence is highlighted by vertical marks. (b) shows the training progression of Experiment 1 (dotted), Experiment 2 
(dashed), and Experiment 3 (solid).

Fig. 5. Distribution of posterior predictive probabilities (PPPs) aggregated over all 2.35 billion pixels in the xBD dataset, each evaluated with 100 Monte Carlo 
samples. The PPPs are separated class-wise and aggregated in individual plots horizontally, while being organized vertically based on the reference class. Diagonal 
plots (correct classifications) ideally shift right (high PPPs), whereas off-diagonal plots (misclassifications) shift left (low PPPs).

V. Hertel et al.                                                                                                                                                                                                                                   International Journal of Applied Earth Observation and Geoinformation 143 (2025) 104759 

7 



highest improvement observed for the ‘Damaged’ class. For the ‘No 
visible damage’ and ‘Destroyed’ classes, the performance differences 
between the deterministic and probabilistic baseline models are minor. 
However, Experiment 3 clearly surpasses the performance of both Ex
periments 1 and 2. This demonstrates the effectiveness of combining 
deterministic pre-training with Bayesian fine-tuning for improving 
overall model performance.

4.2. Aggregated uncertainty analysis

Fig. 5 provides detailed insights into the model’s classification 
behavior, shedding light on its internal decision-making tendencies and 
sources of uncertainty. For this analysis, all approximately 2.35 billion 
pixels in the xBD test split are evaluated using 100 MC samples, resulting 
in approximately 235 billion individual pixel evaluations. The corre
sponding PPPs, as previously illustrated in Fig. 3, are separated by class 
and aggregated in individual plots horizontally, while being organized 
vertically based on the reference class. In an ideal classifier, histograms 
along the diagonal (representing correct classifications) would be 
concentrated toward the right, indicating high predictive probabilities 
for the true class. Conversely, off-diagonal histograms (representing 
misclassifications) would be skewed toward the lower end of the prob
ability spectrum, reflecting low predictive probabilities for incorrect 
predictions. Fig. 5 is structured as a 5 × 5 grid, with individual histo
grams referenced using the [row, column] notation. This layout provides 
a nuanced perspective on the model’s ability to differentiate between 
classes.

For pixels labeled as ‘Background’ (first row), the model demon
strates high confidence in excluding the categories ‘Damaged’, 
‘Destroyed’, and ‘Invalid’, as their PPPs are concentrated toward the 
lower end of the probability spectrum (see [1, 3], [1, 4], and [1, 5]). 
Pixels labeled as ‘No visible damage’ generally receive higher- 
confidence classifications, with ‘Damaged’, ‘Destroyed’, and ‘Invalid’ 
categories again clustering near the lower end of the probability spec
trum ([2, 3], [2, 4], [2, 5]). Nonetheless, there is noticeable uncertainty 
between ‘Background’ and ‘No visible damage’, as indicated by the 
relatively broad PPP spectra in [1, 2] and [2, 1]. Turning to ‘Damaged’ 
pixels (third row), the respective PPP distribution in [3, 3] is relatively 
flat, covering a broad range of probabilities from low to high. Despite 
this variability, the model consistently assigns low probabilities to the 
‘Destroyed’ ([3, 4]) and ‘Invalid’ ([3, 5]) categories, reflecting confi
dence in excluding these incorrect classes. The outputs for ‘Background’ 
([3, 1]) and ‘No visible damage’ ([3, 2]) hover around midrange prob
abilities but tend to converge toward lower values. ‘Destroyed’ pixels 
show more expected behavior, with correct classifications heavily 
clustered at the high end of the probability spectrum in [4, 4], while 
misclassifications appear at lower probability values. Finally, for 
‘Invalid’ pixels (bottom row), the model frequently misclassifies them as 
either ‘No visible damage’ ([5, 2]) or ‘Background’ ([5, 1]), yet rarely 
assigns high predictive probabilities to the ‘Damaged’, ‘Destroyed’, or 
even ‘Invalid’ classes ([5, 3], [5, 4], [5, 5]).

4.3. Model transferability

Model performance is evaluated on an independent test split of the 
xBD dataset (see Section 2.2.1) and further assessed via test-only eval
uations on the Ahr valley dataset, highlighting the impact of domain 
shifts and OOD samples. The results in Table 4 align with the trends 
discussed in Section 4.1. All experiments achieve state-of-the-art per
formance on the xBD dataset, with particularly strong results in the ‘No 
visible damage’ and ‘Destroyed’ categories. Performance in the 
‘Damaged’ category remains consistently lower. However, Baye
SiamMTL initialized with pre-trained deterministic weights using 
MOPED (Experiment 3) considerably improves performance and out
performs both Experiments 1 and 2, most notably in the challenging 
‘Damaged’ category.

On the unseen Ahr valley dataset, classification performance declines 
significantly due to the presence of domain shifts. Although the proba
bilistic baseline (Experiment 2) generally surpasses the deterministic 
baseline (Experiment 1), it falls short in the ‘Destroyed’ category. In 
contrast, Experiment 3 consistently demonstrates substantial perfor
mance advantages under these conditions. It achieves significantly 
higher metrics compared to both baselines, demonstrating its superior 
generalization capabilities in handling domain shifts and OOD samples. 
Low performance for the ‘Invalid’ category is expected due to the 
absence of samples in the xBD dataset.

5. Discussion

5.1. Model performance and computational efficiency

The performance of BayeSiamMTL is best understood through the 
lens of its operational design. Unlike many recent BDA models that 
depend on heavily parameterized architectures fine-tuned to specific 
datasets, BayeSiamMTL is intentionally designed to be lightweight, 
generalizable, and uncertainty-aware.

The deterministic baseline features a compact architecture with just 
2.7 million parameters and a computational cost of 16.1 billion floating 
point operations (GFLOPs) per 256 × 256 pixel tile. Its Bayesian 
extension introduces only 0.6 million additional parameters, yielding a 
total of 3.3 million parameters and a computational cost of 19.7 GFLOPs. 
This modest increase demonstrates that uncertainty quantification adds 
value along an orthogonal axis of model complexity (Wani et al., 2025), 
refuting the common assumption that trustworthy uncertainty estimates 
necessitate significantly larger networks. In contrast, state-of-the-art 
CNN and transformer-based methods such as MambaBDA-Small, Dam
Former, ChangeOS-101, and MTF are substantially larger in both 
parameter count and computational cost (Chen et al., 2024, 2022; 
Weber and Kané, 2020; Yu et al., 2025; Zheng et al., 2021). Baye
SiamMTL, by comparison, is up to an order of magnitude more efficient 
in terms of both model size and computational demand (cf. in Table 5).

Beyond efficiency, BayeSiamMTL is designed for operational damage 
assessment and optimized for the internationally recognized three-class 
damage taxonomy of institutions like the Copernicus Emergency Man
agement Service (Hertel et al., 2025). This contrasts with the xBD 

Table 4 
Average and class-specific accuracy metrics of experiments on the xBD and Ahr valley datasets.

Experiment Fweighted
1 (%) Fmacro

1 (%) F1 per class (%)

No visible damage Damaged Destroyed Invalid

xBD dataset
(1) Deterministic baseline 85.2 76.8 91.8 53.7 84.9 n/a
(2) Probabilistic baseline 83.5 74.5 91.3 47.2 85.1 n/a
(3) MOPED based on (1) 89.4 83.8 94.1 69.7 87.5 n/a

Ahr valley dataset
(1) Deterministic baseline 37.9 32.8 59.2 22.3 49.7 0.0
(2) Probabilistic baseline 45.2 35.5 57.6 37.3 47.2 0.0
(3) MOPED based on (1) 53.7 40.5 60.9 51.2 50.0 0.2
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dataset’s four-class damage scheme, which is more prone to label am
biguity and class imbalance.

These architectural and methodological distinctions limit the infor
mation gain of direct metric-to-metric comparisons with dataset- 
optimized and highly parameterized state-of-the-art models. Neverthe
less, to ensure long-term comparability with existing and future 
benchmarks, all experiments are retrained using the xBD dataset’s 
original four-class damage scheme and evaluated on its corresponding 
test split. Performance is assessed following the xView2 challenge pro
tocol (Gupta et al., 2019), which combines building localization and 
damage classification into a single metric: FxView2

1 = 0.3× Floc
1 + 0.7×

Fdmg
1 , where Fdmg

1 denotes the harmonic mean of class-wise damage 
scores. This formulation strongly penalizes underperforming classes, 
ensuring the metric reflects balanced performance across all classes. 
Under this evaluation, BayeSiamMTL achieves a score of 78.4 % (cf. in 
Table 5), placing it in the same performance magnitude as highly 
parameterized models (Chen et al., 2024, 2022; Weber and Kané, 2020; 
Yu et al., 2025; Zheng et al., 2021). This is particularly notable given 
BayeSiamMTL’s lightweight architecture and its added capability of 
providing calibrated uncertainty estimates.

In summary, BayeSiamMTL achieves operationally meaningful 
classification accuracy, credible uncertainty quantification, and a sub
stantially reduced computational footprint. Its core contribution lies not 
in marginal performance gains over recent benchmarks, but in intro
ducing a reliable and efficient probabilistic framework tailored for 
scalable deployment in real-world disaster scenarios. Moreover, this 
study demonstrates that extending deterministic models into probabi
listic counterparts can lead to substantial improvements in performance 
and generalization capability, all while preserving the original archi
tectural structure.

5.2. Decoding classification dynamics: Insights and uncertainties

The aggregated histograms of PPPs in Fig. 5 provide a detailed 
perspective into the model’s classification dynamic within a probabi
listic, uncertainty-aware framework. While previous studies have indi
cated intermediate damage levels as a key challenge in BDA, this 
analysis is the first to systematically investigate and quantify these 
tendencies through probabilistic modeling.

A primary outcome emerging from Fig. 5 is that ‘Background’ pixels 
cause the most confusion. The model often assigns comparably high 
PPPs to ‘Background’ across all predictions, producing wide-ranging 
probability spectra in the first column of Fig. 5. This challenge likely 
stems from inaccurate or incomplete building footprint annotations or 
from the broad heterogeneity of ‘Background’ characteristics within the 
dataset. Addressing these issues could involve refining training datasets, 
improving segmentation precision, or incorporating additional features 
to mitigate ambiguity.

Focusing on the actual damage classes and disregarding both 
‘Background’ and ‘Invalid’ pixels, the internal 3 × 3 grid in [2–4, 2–4] of 

Fig. 5 becomes most relevant. Contrary to the commonly held view that 
separating intermediate damage levels is especially difficult, the model 
confidently differentiates ‘Damaged’ from ‘Destroyed’ buildings ([3, 4]) 
and vice versa ([4, 3]). Nonetheless, the relatively broad PPP distribu
tion for ‘Damaged’ instances in [3, 3] suggests significant variability and 
elevated predictive uncertainty within this specific class. A similar, 
though less pronounced, pattern appears for ‘Destroyed’ pixels, which 
exhibit a bimodal, U-shaped distribution in [4, 4]. These outcomes imply 
that while the model can be highly confident in correct classifications, it 
can also occasionally misclassify certain instances with equally high 
certainty. Such high-confidence misclassifications carry significant risk 
in practical applications and underscore the need for strategies to 
mitigate their occurrence.

Examining PPDs of individual pixels (see Fig. 3) reveals a deeper 
limitation of framing BDA strictly as a semantic segmentation task. Here, 
Fig. 3a shows a unimodal distribution across damage levels, whereas 
Fig. 3b displays a bimodal distribution. This bimodality contradicts the 
physics-based expectation that ‘No visible damage’ and ‘Damaged’ 
would lie closer on the damage spectrum than ‘No visible damage’ and 
‘Destroyed’. Such inconsistencies could be alleviated by adopting 
custom loss functions that encode the ordinal nature of damage levels, 
ensuring that slight differences in damage severity are penalized less 
than large differences. Alternatively, a regression-based approach might 
align more naturally with the continuous spectrum of damage severity, 
better capturing gradual transitions from minor to severe building 
damage.

5.3. Generalization and domain adaptation capabilities

Bayesian models are widely recognized for their ability to mitigate 
overfitting and enhance generalization, making them a robust founda
tion for techniques in domain adaptation and domain generalization 
(Liu et al., 2021; Xiao et al., 2021). Our results in Table 4 illustrate this 
property: although the Bayesian models already show a notable 
improvement over deterministic approaches on the training dataset 
(source domain), they display a markedly stronger performance 
advantage on the unseen Ahr valley dataset (target domain).

To further quantify this improvement, we train BayeSiamMTL on the 
target domain as a benchmark and report the average and class-wise 
gains of our Bayesian approaches relative to this benchmark in 
Table 6. The results show that BayeSiamMTL substantially reduces the 
performance gap, with the most pronounced benefits observed in the 
‘Damaged’ category, where 48 % of the potential performance gain are 
achieved. Moreover, Hertel et al. (2025) employed an identical but 
deterministic model architecture trained exclusively on the xBD dataset 
and later incorporated semi-supervised and supervised domain adapta
tion techniques to adapt to the Ahr valley dataset. Notably, our Exper
iment 3 outperforms several of these adaptation strategies, despite the 
fact that BayeSiamMTL in Experiment 3 was never exposed to Ahr valley 
data, whereas the domain adaptation methods either directly or 

Table 5 
Performance of BayeSiamMTL trained on the xBD dataset’s original four-class damage scheme and evaluated on the corresponding xBD test split in comparison with 
current state-of-the-art methods, along with model size and computational cost.

Method FxView2
1 (%) Floc

1 (%) Fdmg
1 (%) Param (M) GFLOPs

(1) Deterministic baseline 65.4 65.4 65.4 2.7 16.1
(2) Probabilistic baseline 22.3 48.5 11.1 3.3 19.7
(3) MOPED based on (1) 78.4 78.2 78.4 3.3 19.7

MambaBDA-Small 81.1 86.6 78.8 52.1 130.8
DamFormer 77.0 86.9 72.8 32.5 169.3
ChangeOS-101 75.5 85.7 71.1 58.1 157.3
MTF 74.1 83.6 70.0 44.4 268.8
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indirectly leveraged target domain information.
This capacity to generalize across domains without explicit adapta

tion can be attributed to the marginalization property of BayeSiamMTL, 
which involves integration over the model parameter space. By effec
tively marginalizing over model parameters, Bayesian models benefit 
from an implicit form of regularization, thereby reducing overreliance 
on specific training samples and producing more robust predictions on 
unseen data (Calvetti and Somersalo, 2018; Wilson and Izmailov, 2020).

5.4. Uncertainty visualization and confidence-informed damage maps

Algorithmic developments and performance improvements are cen
tral to BDA. However, effective communication and visualization of 
model predictions are equally important, particularly in rapid response 
scenarios characterized by limited resource availability. In such con
texts, explicitly incorporating prediction uncertainty into the decision- 
making process is critical for evaluating potentially adverse conse
quences. Special attention should be given to tail probabilities, as low- 
probability but high-impact events may require response strategies 
that deviate from those suggested by the most probable model output 
alone. Fig. 6 illustrates several confidence-informed damage maps 

applied to the Ahr valley region, highlighting how explicitly integrating 
uncertainty information can enhance transparency and support 
informed decision-making.

In Fig. 6a, the input data and reference mask are presented alongside 
the two key outputs of BayeSiamMTL: the predicted damage classifica
tion, which assigns a specific damage condition to each individual 
building, and the corresponding certainty mask, which communicates 
the degree of confidence in each prediction. The probabilistic certainty 
output directly informs the final classification by selecting the damage 
category with the highest PPP. In combination, these outputs provide a 
richer foundation for informed decision-making, particularly under the 
constraints of post-disaster emergency response. Fig. 6b merges the 
classification and certainty layers into a unified visualization by linearly 
interpolating the damage level colors based on the associated PPPs, such 
that more saturated colors indicate higher model confidence in the 
predicted damage class. This approach produces continuous transitions 
that reflect both the model’s prediction and varying confidence levels. 
Decomposing the pixelwise PPDs into their constituent PPPs further 
reveals stratified probabilities across damage categories, enabling more 
precise identification and prioritization of damage clusters. Fig. 6c 
demonstrates how probabilistic outputs can delineate both the 

Table 6 
Average and class-specific accuracy metrics of our experiments compared to supervised learning on the Ahr valley (benchmark). The percentages show the perfor
mance gain compared to the upper performance limit.

Experiment Fweighted
1 (%) Fmacro

1 (%) F1 per class (%)

No visible damage Damaged Destroyed Invalid

Benchmark 75.3 + 100 % 54.7 + 100 % 72.0 + 100 % 81.9 + 100 % 65.0 + 100 % 0.0 + 100 %
(3) MOPED based on (1) 53.7 + 42 % 40.5 + 35 % 60.9 + 13 % 51.2 + 48 % 50.0 + 2 % 0.2 NaN
(2) Probabilistic baseline 45.2 + 20 % 35.5 + 12 % 57.6 − 13 % 37.3 + 25 % 47.2 − 16 % 0.0 NaN
(1) Deterministic baseline 37.9 + 0 % 32.8 + 0 % 59.2 + 0 % 22.3 + 0 % 49.7 + 0 % 0.0 + 0 %

Fig. 6. Confidence-informed damage maps: (a) input data, reference mask, model prediction, and probabilistic certainty mask. (b) integrated prediction-certainty 
map with disaggregated and stratified probabilities of damage clusters. (c) minimum and maximum damage extent delineated from confidence intervals.
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minimum and maximum extent of building damage within a specified 
confidence interval. Here, an 85 % confidence interval corresponds to a 
PPP threshold of 7.5 %. The minimum extent is defined by the least 
severe damage class exceeding this threshold, while the maximum 
extent reflects the most severe class still deemed plausible. This visual
ization offers a concise summary of both the best- and worst-case out
comes at the building level. Furthermore, Fig. 6c assesses model 
performance across confidence intervals, revealing higher performance 
within the sphere of maximum damage extent. This can be interpreted as 
a probabilistic tendency analysis toward underestimation of building 
damage for the illustrated tile.

Overall, these visualizations underscore the value of confidence- 
informed damage maps. By integrating uncertainty into the final clas
sification, stakeholders are equipped with richer and more actionable 
information. A forthcoming companion study will further investigate 
how quantified uncertainties derived from Bayesian modeling can be 
systematically integrated into maps, with a focus on enhancing decision- 
making in emergency contexts.

6. Conclusion

This study advances post-disaster building damage assessment (BDA) 
by integrating uncertainty quantification (UQ) into a hybrid Bayesian 
deep learning framework. While accurate and reliable damage assess
ment is essential for guiding humanitarian interventions, UQ ensures 
that model outputs are both reliable and transparent. To achieve this, we 
introduced BayeSiamMTL, a Bayesian Siamese multitask learning ar
chitecture that combines deterministic binary semantic segmentation 
for building footprint extraction with probabilistic multiclass change 
detection for damage level classification. By representing model pa
rameters as probability distributions and applying variational inference 
with Monte Carlo approximation, we derived pixelwise posterior pre
dictive distributions (PPDs). These PPDs provide a rich depiction of both 
prediction outcomes and their associated uncertainties, allowing the 
model to assess its own confidence.

Our results highlighted that Bayesian modeling not only supplies 
explicit uncertainty estimates but also delivers superior classification 
performance compared to deterministic baselines. Evaluations on the 
training xBD dataset and the unseen Ahr valley dataset confirmed 
BayeSiamMTL’s generalization capabilities and robustness under 
domain shifts, which is a crucial requirement for BDA in real-world 
disaster scenarios. This behavior can be attributed to the marginaliza
tion property of Bayesian methods and is particularly evident when 
deterministic pre-training is combined with advanced weight initiali
zation strategies such as MOPED. Analyzing over 235 billion individual 
pixel evaluations revealed the ‘Background’ class as the primary source 
of confusion across all damage levels, likely due to imperfect building 
footprint annotations and the wide variability among non-building 
pixels. The analysis also indicated that building destructions are more 
frequently confused with intact buildings rather than among varying 
degrees of damage. In addition, we illustrated how PPDs can be used to 
generate confidence-informed damage maps in the form of integrated 
prediction-certainty visualizations. These maps provide disaggregated 
and stratified probabilities of distinct damage clusters as well as mini
mum/maximum damage extents delineated from confidence intervals.

In spite of these promising findings, the study uncovers a limitation 
inherent in treating BDA strictly as a semantic segmentation task. Spe
cifically, the multimodal nature of certain PPDs contradicts with the 
physical intuition of an inherent order among damage classes; namely 
that ‘No visible damage’ and ‘Damaged’ would lie closer on the damage 
spectrum than ‘No visible damage’ and ‘Destroyed’. Addressing this 
discrepancy may involve adopting custom loss functions that respect the 
ordinal relationship among damage classes or reframing the problem as 
a regression task to promote unimodal PPDs.

Overall, the results demonstrate that BayeSiamMTL effectively le
verages Bayesian modeling to produce robust and accurate building 

damage assessments with explicit uncertainty quantification. By out
performing deterministic approaches and demonstrating strong adapt
ability under domain shifts, this approach provides transparent damage 
estimation and domain scalability, making it well-suited for real-world 
disaster management contexts. Future research will further explore 
unimodal PPDs and advance intuitive visualization strategies that 
embed uncertainty insights into decision support systems – a critical step 
in maximizing the potential of Bayesian modeling for disaster response 
and humanitarian applications.
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