Agarwal, Siddhant und Tosi, Nicola und Hüttig, Christian und Greenberg, David und Bekar, Ali (2025) Accelerating the Discovery of Steady‐States of Planetary Interior Dynamics With Machine Learning. Journal of Geophysical Research: Machine Learning and Computation, 2 (1). Wiley. doi: 10.1029/2024JH000438. ISSN 2993-5210.
![]() |
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024JH000438
Kurzfassung
Simulating mantle convection often requires reaching a computationally expensive steady-state, crucial for deriving scaling laws for thermal and dynamical flow properties and benchmarking numerical solutions. The strong temperature dependence of the rheology of mantle rocks causes viscosity variations of several orders of magnitude, leading to a slow-evolving “stagnant lid” where heat conduction dominates, overlying a rapidly evolving and strongly convecting region. Time-stepping methods, while effective for fluids with constant viscosity, are hindered by the Courant criterion, which restricts the time step based on the system's maximum velocity and grid size. Consequently, achieving steady-state requires a large number of time steps due to the disparate time scales governing the stagnant and convecting regions. We present a concept for accelerating mantle convection simulations using machine learning. We generate a data set of 128 two-dimensional simulations with mixed basal and internal heating, and pressure- and temperature-dependent viscosity. We train a feedforward neural network on 97 simulations to predict steady-state temperature profiles. These can then be used to initialize numerical time-stepping methods for different simulation parameters. For an example application, the number of time steps required to reach steady-state is reduced by a factor of 2.8, compared to typically used initializations. The benefit of this method lies in requiring very few simulations to train on, providing a steady-state solution that is numerically accurate as we initialize a numerical method, and posing minimal computational overhead at inference time. We demonstrate the effectiveness of our approach and discuss its potential for advancing mantle convection research.
elib-URL des Eintrags: | https://elib.dlr.de/215961/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Accelerating the Discovery of Steady‐States of Planetary Interior Dynamics With Machine Learning | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2025 | ||||||||||||||||||||||||
Erschienen in: | Journal of Geophysical Research: Machine Learning and Computation | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Band: | 2 | ||||||||||||||||||||||||
DOI: | 10.1029/2024JH000438 | ||||||||||||||||||||||||
Verlag: | Wiley | ||||||||||||||||||||||||
ISSN: | 2993-5210 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | neural networks; mantle convection; steady state; geophysical fluid dynamics; machine learning; planetary interiors | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erforschung des Weltraums | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EW - Erforschung des Weltraums | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Exploration des Sonnensystems | ||||||||||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Planetenforschung > Planetenphysik | ||||||||||||||||||||||||
Hinterlegt von: | Tosi, Dr. Nicola | ||||||||||||||||||||||||
Hinterlegt am: | 09 Sep 2025 13:56 | ||||||||||||||||||||||||
Letzte Änderung: | 09 Sep 2025 13:56 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags