elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

A benchmark for finite Prandtl number convection: comparison of Boltzmann and Navier–Stokes solutions

Morra, Gabriele und Mora, Peter und Hüttig, Christian und Tosi, Nicola und Samuel, Henri und Yuen, David A. (2025) A benchmark for finite Prandtl number convection: comparison of Boltzmann and Navier–Stokes solutions. Geophysical Journal International, 242 (3). Oxford University Press. doi: 10.1093/gji/ggaf221. ISSN 0956-540X.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
16MB

Offizielle URL: https://dx.doi.org/10.1093/gji/ggaf221

Kurzfassung

While modern thermal convection in rocky planets is controlled by a slow solid-state creep flow, the earliest stages of terrestrial planets likely experienced turbulent flow during which their silicate envelope was fully molten, usually called magma ocean. The main parameter separating the two regimes is the Prandtl number (⁠⁠), which is so high for mantle convection to be usually assumed infinite, whereas magma oceans are characterized by on the order of 1. We compared the results of isoviscous convection simulations performed with three codes: (GAIA, TLBM, StreamV). These codes are based on different numerical formulations and were used for modelling convection with ranging from 1 to 1000, while exploring different convection intensity by varying the Rayleigh number (⁠⁠) from to ⁠. GAIA (Generic Automaton for planetary Interior Analysis) is a Finite Volume fluid flow and energy solver for the Navier–Stokes equations across arbitrary geometries. TLBM (Thermal Lattice Boltzmann Method) solves the mesocale momentum and energy distribution densities for colliding particles on a discrete lattice. StreamV is a Eulerian–Lagrangian Finite Volume code that solves the Navier–Stokes equations under the Boussinesq approximation. The codes are compared over 24 different simulation setups, analogue to the classical Blankenbach infinite benchmark, but extending it to finite and to two types of boundary conditions, free-slip and no-slip. We show that the results of the three codes are generally in good agreement, and discuss differences. Finite solutions show a much richer dynamics varying from stable steady-state solutions, to oscillatory and chaotic ones, and converging to infinite Prandtl number solution for increasing values of for larger ⁠: is sufficient for but is required for ⁠. Our results offer a robust set of solutions useful for testing future finite Prandtl number convection codes.

elib-URL des Eintrags:https://elib.dlr.de/215960/
Dokumentart:Zeitschriftenbeitrag
Titel:A benchmark for finite Prandtl number convection: comparison of Boltzmann and Navier–Stokes solutions
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Morra, GabrieleDepartment of Physics, University of Louisiana at Lafayette, Lafayette, LA, 70504, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Mora, PeterKing Fahd University of Petroleum and Minerals, Geosciences, Dhahran, Saudi ArabiaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hüttig, ChristianChristian.Huettig (at) dlr.dehttps://orcid.org/0009-0006-3621-7000191482027
Tosi, Nicolanicola.tosi (at) dlr.dehttps://orcid.org/0000-0002-4912-2848NICHT SPEZIFIZIERT
Samuel, HenriInstitut de Physique du Globe de Paris, CNRS, Université de Paris, Paris, FranceNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Yuen, David A.Columbia University, NY, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2025
Erschienen in:Geophysical Journal International
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:242
DOI:10.1093/gji/ggaf221
Verlag:Oxford University Press
ISSN:0956-540X
Status:veröffentlicht
Stichwörter:Numerical modelling, Numerical solutions, Heat flow, Planetary interiors, Dynamics: convection currents and mantle plumes, Physics of magma and magma bodies
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erforschung des Weltraums
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):R - Exploration des Sonnensystems
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung > Planetenphysik
Hinterlegt von: Tosi, Dr. Nicola
Hinterlegt am:09 Sep 2025 13:53
Letzte Änderung:09 Sep 2025 13:53

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.