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S U M M A R Y 

While moder n ther mal conv ection in rock y planets is controlled by a slow solid-state creep 

flow, the earliest stages of terrestrial planets likely experienced turbulent flow during which 

their silicate envelope was fully molten, usually called magma ocean. The main parameter 
separating the two regimes is the Prandtl number ( Pr ), which is so high for mantle convection 

to be usually assumed infinite, whereas magma oceans are characterized by Pr on the order 
of 1. We compared the results of isoviscous convection simulations performed with three 
codes: ( GAIA , TLBM , StreamV ). These codes are based on different numerical formulations 
and were used for modelling convection with Pr ranging from 1 to 1000, while exploring 

different convection intensity by varying the Rayleigh number ( Ra ) from 10 

4 to 10 

6 . GAIA 
(Generic Automaton for planetary Interior Analysis) is a Finite Volume fluid flow and energy 

solver for the Navier–Stokes equations across arbitrary geometries. TLBM (Thermal Lattice 
Boltzmann Method) solves the mesocale momentum and energy distribution densities for 
colliding particles on a discrete lattice. StreamV is a Eulerian–Lagrangian Finite Volume code 
that solves the Navier–Stokes equations under the Boussinesq approximation. The codes are 
compared over 24 different simulation setups, analogue to the classical Blankenbach infinite Pr 
benchmark, but extending it to finite Pr and to two types of boundary conditions, free-slip and 

no-slip. We show that the results of the three codes are generally in good agreement, and discuss 
differences. Finite Pr solutions show a much richer dynamics varying from stable steady-state 
solutions, to oscillatory and chaotic ones, and converging to infinite Prandtl number solution 

for increasing values of Pr for larger Ra : Pr ≥ 100 is sufficient for Ra = 10 

5 but Pr ≥ 1000 is 
required for Ra = 10 

6 . Our results offer a robust set of solutions useful for testing future finite 
Prandtl number convection codes. 

Key words: Numerical modelling; Numerical solutions; Heat flow; Planetary interiors; Dy- 
namics: convection currents and mantle plumes; Physics of magma and magma bodies.. 
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 I N T RO D U C T I O N  

raditionally, geodynamic modelling has mainly focused on mantle
onvection at conditions similar to present-day Earth, characterized
y infinite Prandtl number fluid dynamics because the Earth and
ther planetary mantles span most of their histories in solid-state
on vection. Recent gro wing interest focusing on other problems
uch as Archean geodynamics (van Hunen et al. 2008 ; Gunawardana
t al. 2024 ), Hadean geodynamics (Marchi et al. 2014 ; Ballmer
t al. 2017 ; Korenaga & Marchi 2023 ), convection in global-scale
agma oceans on Earth (Nikolaou et al. 2019 ; Pato ̌cka et al. 2020 ;
alvador & Samuel 2023 ; Salvador et al. 2023 ) and on exoplanets
C © The Author(s) 2025. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
Lichtenberg et al. 2021 ), as well as liquid silicate layers confined
n the deepest mantle (Samuel et al. 2021 ) calls for new modelling
ools that can explore this greater variety of convection regimes for
errestrial planet interiors. 

Convection in an isoviscous fluid can be primarily described by
wo governing parameters, the Rayleigh number Ra and the Prandtl
umber Pr (Lohse & Shishkina 2023 ). Since Pr is assumed virtually
nfinite for mantle solid-state convection, Ra is the primary param-
ter used to characterize the dynamics of solid planetary interiors.
or the present-day Earth’s mantle, Ra is usually estimated to range
etween 10 5 and 10 7 (Ricard 2007 ), and up to 10 9 for super Earths
Valencia & O’Connell 2009 ; Korenaga 2010 ; Tackley et al. 2013 ),
oyal Astronomical Society. This is an Open Access 
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numbers commonly accessible by modern computational codes. On 
the contrary, early hotter planetary stages are characterized by the 
presence of a molten silicate mantle referred to as magma ocean 
stage. During magma ocean periods, values of Pr are on the order 
of 1, close to values for air ( Pr = 0 . 7 ) or water ( Pr = 7 ), while Ra
can reach values much larger than those associated with solid-state 
convecting mantle, up to ≈ 10 30 (Solomatov 2007 ). This is well 
beyond the limits of what can be achieved using existing numeri- 
cal modelling tools, and goes also beyond the limits of laboratory 
experiments (Lohse & Shishkina 2023 ). While our proposed bench- 
mark is limited to Ra up to 10 6 , it reaches a turbulent regime, as 
measured by the Reynolds number Re , which is up to Re ≈ 1000 
for the lowest Pr that we consider ( Pr = 1 ), and the codes used have 
been tested for Ra ≥ 10 10 (Salvador & Samuel 2023 ; Mora et al. 
2024 ). 

Formally, the presence of a coefficient 1 / Pr in the non- 
dimensional formulation of the momentum equation implies that 
by increasing Pr , results are expected to converge to the infinite Pr 
solution. We verify this observ ation b y extending a previous bench- 
mark for infinite Pr codes (Blankenbach et al. 1989a ) to Pr ranging 
from 1 to 1000. The complexity and diversity of convection solu- 
tions that we find for Pr in the 1 − 1000 range calls for suitable 
codes that optimally runs also at finite Pr , aimed at studying magma 
oceans and other geophysical systems such as the ocean and the 
atmosphere. 

To our knowledge this work is the first benchmark where the 
same codes are tested across the spectrum that goes from 1 to vir- 
tually infinite Pr , using otherwise the same physical forcing ( Ra ) 
and boundary conditions. Previous geodynamic community bench- 
marks have focused on several aspects of infinite Pr dynamics (e.g., 
v an K eken et al. 2008 ; King et al. 2010 ; Tosi et al. 2015a ), while
other finite Pr community benchmarks were proposed by different 
fluid dynamics communities (e.g., Nicolas et al. 2011 ; Kooij et al. 
2018 ). TLBM , Thermal Lattice Boltzmann Method, w as ne ver accu- 
rately compared before with established geodynamic codes on such 
a wide range of parameters. The rationale for this work is therefore 
also to test solutions at increasing Pr values until convergence to 
the infinite Pr solution is reached. 

The manuscript is organized as follows. Section 2 presents the 
initial setup, boundary conditions, and equations that are solved. 
Section 3 describes the methods on which the three codes rely. 
Section 4 illustrates the results and is divided in three parts, one 
focusing on a comparison of the asymptotic results, a second one 
on the time-dependent space-averaged velocity and on the heat 
flux at the top/bottom boundaries, and finally a third part on the 
outcome of a resolution test for the most turbulent case. In Section 5 
consistencies and discrepancies between the numerical results are 
discussed. 

2  B E N C H M A R K  S E T U P  

The simulations are based on finite Pr ( i.e . non-ne gligible inertia) 
formulation for a thermall y-dri v en conv ecting fluid, heated from 

below and cooled from above in a 2-D square cavity with either 
free-slip or no-slip boundary conditions on all the four box sides. 
The lateral boundaries are thermally insulating, while the top and 
bottom surfaces are isothermal. 

The equations to be solved are the momentum equation of a non- 
rotating Boussinesq fluid, which implies an incompressible closure, 
at finite Pr , which is defined as the ratio between kinematic viscosity 
and thermal dif fusi vity 

Pr = ν/κ, (1) 

where the kinematic viscosity is the ratio between the dynamic 
viscosity η and the density ρ: ν = η/ρ. 

Written in non-dimensional form, and assuming a homogeneous 
viscosity, the momentum equations can be written as: 

1 

Pr 

(
∂ u 

∂t 
+ u · ∇u 

)
+ ∇ p = ∇ 

2 u + Ra T e g , (2) 

where e g is the unit vector in the direction of gravity (whose magni- 
tude g is embedded in the Rayleigh number Ra ), p is the dynamic 
pressure, T is the temperature normalized by the total tempera- 
ture contrast �T between the two horizontal surfaces and therefore 
ranges between 0 and 1. The Rayleigh number measures the inten- 
sity of the conv ectiv e vigor, physically defined by the ratio between 
the thermal buoyancy and the resisting effects due to the momen- 
tum and thermal diffusion. In a Cartesian domain of height D, Ra 
is expressed as: 

Ra = 

αg �T D 

3 

νκ
, (3) 

where g is the gravitational acceleration and α is the thermal ex- 
pansion. 

The momentum equation is closed with the incompressible equa- 
tion, representing the conservation of mass in the Boussinesq ap- 
proximation: 

∇ · u = 0 , (4) 

coupled to the energy conservation equation for a non-dimensional 
temperature T : 

∂T 

∂t 
+ ∇ · ( u T ) = ∇ 

2 T , (5) 

where the second term can be equally expressed as u · ∇T due to 
incompressibility ∇ · u = 0 . The setup with the initial conditions 
is shown in Fig. 1 . Two of the codes ( GAIA and StreamV ) use 
a different space and time rescaling from TLBM , due to different 
solving strategies, therefore the results are shown as a function of 
dimensionless time using diffusion time scale ( D 

2 /κ). Similarly, 
the velocity is rescaled as κ/D. The temperature is renormalized 
to �T , the difference between top and bottom temperatures in the 
domain considered. 
GAIA simulations were conducted with a resolution of 150 × 150 

and solution-dependent time stepping. All TLBM simulations used 
a resolution of 512 × 512 and 10 7 time steps, except for Ra = 10 6 

and Pr = 1000 for which the number of time steps were increased 
up to 10 8 to obtain convergence to infinite Pr . StreamV results were 
obtained on a grid consisting of 64 × 64 square cells for all cases 
except for Ra = 10 6 and Pr = 1 where a grid of 128 × 128 was 
used to warrant a sufficiently accurate solution. 

2.1 Boundary and initial conditions 

We tested two types of boundary conditions (BCs), in both cases 
adopted on all four sides of the model domain: either free-slip (as 
in Blankenbach et al. 1989a ) or no-slip (also called rigid or fixed ). 
The temperature is constant at the top ( T = 0 ) and at the bottom 

( T = 1 ), and the heat flux is zero on the side w alls. Since physical 
parameters are assumed to be homogeneous in the entire domain, the 
dynamics depends only on Pr and Ra , besides initial and boundary 
 2025
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Figure 1. Setup of the benchmark. The field represents the initial temperature field. The horizontal ( x) and vertical ( z) coordinates are assumed to be from 0 
to 1. 
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The initial condition for the velocity is zero everyw here, w hile we
dopt an initial choice for T that forces convection in one direction,
therwise different symmetric solutions can emerge: 

T ( x, z, t = 0) = [ z + 0 . 3 sin ( π z) cos ( πx) ] , (6) 

here x is the horizontal coordinate and z is depth, both of them
oing from zero to one. We observed that while for the free-slip BC
he initial condition does not influence the long-term solution ( e .g .
tationary or chaotic), for the no-slip cases different initial condi-
ions trigger different final solutions. For example, the oscillatory
olution that we observe at Ra = 10 5 and Pr = 100 appears only
ith certain initial conditions such as the one chosen here. 
Each simulation runs for a dimensionless time t max = 0 . 35 . Mod-

ls with Ra = 10 4 rapidly reach steady-state, while for higher Ra
scillatory solutions can develop (for certain values of Pr and no-
lip boundary conditions), or even remain in a permanent chaotic
egime where a steady solution is never reached. 

.2 Metrics used to compare models 

e primarily resort to values summarizing the results of each sim-
lation through time. In particular, similarly to previous analogous
enchmarks, we calculate (1) the root mean square of the velocity

V rms , a way of averaging the velocity magnitudes across the en-
ire domain, taking into account both the horizontal and vertical
omponents of the flow, and (2) the Nusselt number Nu , defined as:

V rms = 

[∫ 1 

0 

∫ 1 

0 
( u 

2 
x + u 

2 
z ) d x d z 

]1 / 2 

(7) 

u = 

1 

�T 

∫ 1 

0 

∂T ( x, z) 

∂z 

∣∣∣∣
z= 1 

dx, (8) 

here the velocities are renormalized by D/κ and it is assumed that
z = �x = 1 and �T = 1 is the difference between the bottom

nd the top temperatures. If the model does not reach steady-state,
e compute the average value between dimensionless times 0.25
nd 0.35. 

We compared the root mean square velocity ( V rms ) and the Nusselt
umber ( Nu ) for all the 24 tested setups (3 Ra cases × 4 Pr cases × 2
Cs). We compared the averaged temperature ( T ave ) for all models,
ut we do not show here the results as they are not insightful because
f the problem symmetry (see eq. 6 and Fig. 1 ) leading to T ave close
o 0.5 for most cases. Simulations with GAIA were performed by C.
uttig, while StreamV simulations were conducted by H. Samuel.

V rms and Nu were extracted by G. Morra and represented as time-
eries in a homogeneous format. While the results for the low Ra
umbers ( Ra = 10 4 and Ra = 10 5 ) are suf ficientl y smooth to be
lear at any sampling, the chaotic results for Ra = 10 6 and Pr ≥ 10
iverge in the details. For this reason, we sampled a range of 1000
o 2000 points to sho w ho w the solution varies without cluttering
he image. Finally V rms and Nu have been tabulated, choosing the
teady-state value when existing, or computing the time average
rom t = 0 . 25 to t = 0 . 35 elapsed time. 

 C O D E S  U S E D  

e describe here three software packages developed for modelling
uid-dynamics solving the momentum (Navier–Stokes Equations,
ereafter NSE) and energy equations ( StreamV and GAIA ) or to
olve the mesoscale Boltzmann equation which asymptotically con-
erges to the solution of the thermal NSE ( TLBM ). 

.1 GAIA software 

he development of the Generic Automaton for planetary Interior
nalysis ( GAIA ) began in 2006 at the German Aerospace Center

DLR), Institute of Planetary Research in Berlin. GAIA is written in
 ++ and has no external dependencies, making it self-contained

oo, except for the possibility to additionally use external linear
 2025
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GAIA is a fluid flow and energy solver for the incompressible and 
compressible (anelastic) Navier–Stokes equations across arbitrary 
2-D and 3-D geometries. Initially designed to simulate Stokes flow 

(creeping flow) with strongly varying viscosity (H üttig et al. 2013 ), 
GAIA has since been extended to support flows driven by inertia. 
Also supporting a wide range of geometries, these advanced features 
make GAIA an ideal tool for simulating a variety of geophysical flows 
such as mantle, core, and ocean convection. 
GAIA w as initiall y designed to operate in a 3-D spherical shell 

using a spiral grid (H üttig & Stemmer 2008b ). The conservation 
equations are solved using the Finite-Volume Method applied to 
Voronoi cells (H üttig & Stemmer 2008a ). Classical domain decom- 
position with Message Passing Interface is employed for massi vel y 
parallel computations, allowing GAIA to handle large and complex 
datasets. For the advection scheme, GAIA utilizes a flux limiter (van 
Leer 1979 ), which is second-order accurate in smooth flow regions, 
and a third-order implicit time integration scheme. The implicit time 
stepping helps to overcome the Courant criterion, enabling less re- 
strictive time steps. In the presence of unifor m g rids such as those 
used in this benchmark, the co-located arrangement of temperature 
and velocity fields at cell centers renders the solution of the Stokes 
and diffusion equations also second-order accurate. The momentum 

matrix is not split, solving the momentum and mass conservation 
equations for velocities and pressure in the same step. Energy con- 
servation is solved in a separate step, including nonlinear iterations 
if necessary (Picard iterations). 
GAIA offers flexibility in solver selection, ranging from direct 

solvers such as MUMPS (MUltifrontal Massi vel y Parallel sparse 
direct Solver, Amestoy et al. 2001 , 2006 ) for small problems to a 
variety of iterative solvers for larger problems. Parallel GPU support 
is also enabled via the CUDA (Compute Unified Device Architec- 
ture) interface, even in hybrid GPU/CPU setups. 

Over the years GAIA has been validated through a variety of 
benchmark tests for thermal convection in 2-D rectangular geome- 
tries, including incompressible and compressible flow with infinite 
Prandlt number and temperature-dependent viscosity (Blankenbach 
et al. 1989a ; King et al. 2010 ), as well as strain-rate-dependent 
viscosity (Tosi et al. 2015b ), and incompressible flow with finite 
Prandlt number (Erturk et al. 2005 ). In addition, GAIA has been 
e xtensiv ely tested for thermal convection in curvilinear geometries, 
including 2-D cylinders and spherical annuli (Fleury et al. 2024 ) and 
3-D spherical shells (Christensen et al. 2001 ; Zhong et al. 2008 ). 

The Nusselt number at the top of the domain (eq. 7 ) is computed 
from the uppermost gradient of the laterally averaged temperature 
field by finite difference. In practice, the first cell value below the 
boundary is subtracted from the boundary value ( i.e. zero at z = 1 ) 
and divided by half the vertical cell size. The RMS velocity eq. ( 8 ) 
is simply computed using the co-located components of the solution 
at cell centers. 

3.2 StreamV software 

StreamV is a Eulerian–Lagrangian parallel Finite Volume code 
written in Fortran that solves the Navier–Stokes equations under 
the Boussinesq approximation coupled to the conservation of energy 
and/or composition, at either infinite or finite Prandtl numbers in 
2-D and 3-D Cartesian or curvilinear geometries. 

In plane geometries, the code can rely on a primitive variable 
formulation, or on a pure stream function formulation that sat- 
isfies automatically the conservation of mass. Both formulations 
have been benchmarked against various numerical and analytical 
solutions (Samuel & Evonuk 2010 ; Samuel 2012 , 2018 ; Tosi et al. 
2015b ; Salvador & Samuel 2023 ), and as pointed out in previous 
studies (Blankenbach et al. 1989b ; van Keken et al. 1997 ; Deubel- 
beiss & Kaus 2008 ; Tosi et al. 2015b ), yield very similar results. 
Here, results are obtained using the pure stream function formula- 
tion as an alternative to the primiti ve v ariable formulation used in 
GAIA . For 2-D geometries and in the presence of inertial terms, the 
stream function formulation reduces the three Navier–Stokes equa- 
tions ( x- and z-momentum and the continuity equation) to a single 
scalar parabolic equation for the stream function, ψ . The latter re- 
lates to the velocity vector components as: u = ( u x , u z ) = ( ∂ ψ/∂ z,
−∂ ψ/∂ x). The governing scalar equation is obtained by taking the 
curl of the momentum equations and substituting the velocity vector 
components using the definition of the stream function. In the case 
of constant viscosity considered here, this leads to the following 
dimensionless equation: 

D∇ 

2 ψ 

Dt 
= ∇ 

2 ( ∇ 

2 ψ) − Ra 
∂T 

∂x 
, (9) 

where D X/D t = ∂ t X + u · ∇ X expresses the Lagrangian deri v a- 
tive of the scalar quantity X . Expanding the Lagrangian deri v ati ve 
and making use of the definition of the stream function, the above 
equation can be written as: 

∂ ∇ 

2 ψ 

∂t 
= ∇ 

2 ( ∇ 

2 ψ) − u · ∇ ( ∇ 

2 ψ) − Ra 
∂T 

∂x 
, (10) 

where spatial deri v ati ves are discretized on a staggered grid in which 
ψ is defined at nodal (co-located) points, leading to velocity vector 
components defined at the center of each cell surface, while the 
temperature is defined at cell centers. Relying on such staggered 
grid allows one to approximate first-order deri v ati ves in each direc- 
tion with finite differences of second-order accuracy involving only 
two adjacent points. This corresponds to 13-points finite difference 
stencils due to the fourth-order deri v ati v es involv ed. Recognizing 
that ∇ 

2 ψ is the vorticity ω, the second term on the right-hand side 
of eq. ( 10 ) corresponds to the advection of ω along the flow stream- 
lines, and is handled via a nonlinear upwind biased scheme using a 
minmod limiter (Kupferman 2001 ), which is of second-order accu- 
racy for a suf ficientl y smooth field. The left-hand side of eq. ( 10 ) is 
approximated by an explicit scheme between two consecutive time 
steps t and t + �t : 

∇ 

2 ψ ( t + �t ) = ∇ 

2 ψ ( t ) + �t {
∇ 

2 [ ∇ 

2 ψ ( t )] − u ( t) · ∇ [ ∇ 

2 ψ( t)] − Ra 
∂T ( t) 

∂x 

}
, (11) 

where the time step �t is subject to the following stability crite- 
ria involving the Prandtl number and the minimum grid spacing, 
�h : �t ≤ �h 

2 / (4 Pr ) . The resulting Poisson eq. ( 11 ) is solved for
ψ ( t + �t ) using a geometric multigrid approach (Brandt 1977 ), 
performing V-cycles with a Jacobi smoother . F ree slip ( ∂ 2 ψ/∂n 

2 

= 0, where n indicates the normal to the boundary) and no-slip 
boundary ( ∂ ψ/∂ n = 0) conditions for ψ are enforced via one layer 
of ghost nodal points, together with the requirement that ψ = 0 
along all domain boundaries (Houston & De Bremaecker 1974 ), 
while Dirichlet and Neumann temperature boundary conditions are 
enforced using a layer of ghost cell points along each boundary 
(Patankar 1980 ). This numerical scheme for solving the Navier–
Stokes equations without the buoyancy term was also successfully 
benchmarked against numerical solutions at various Prandtl num- 
bers following the lid-driven cavity benchmark (Ghia et al. 1982 ). 

Temperature is advected using a fifth-order upwind-biased 
scheme (Jiang & Shu 1996 ) (subject to a less restrictive Courant 
 2025
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tability criterion than that of the bi-harmonic equation) applied to
ach direction separately that results in small numerical diffusion
Samuel 2014 ). 

The time-dependent biharmonic eq. ( 11 ) and conservation of
nergy are integrated in time with an explicit second-order, Total
ariation Diminishing Runge–Kutta Scheme (Harten 1983 ). 
The fifth-order discretization for advection terms with second-

rder for other spatial deri v ati ves in StreamV , along with the use of
he staggered grid where the stream function is defined at collocated
odes (as discussed above), yields a formal second-order spatial
ccuracy. Note that for a specific case, we also used StreamV with
 primitive variable formulation where the pressure and velocities
re solved using a projection method (Chorin 1968 ) leading to a
ressure Poisson equation that is solved using a geometric multigrid
ethod. 
For StreamV the temperature gradient that enters the Nusselt

umber was computed by finite differences using the cell-centered
alues located just above and below z = 1 , leading to a second-order
recision in space. These values were then horizontally averaged
sing an arithmetic mean. RMS velocities were computed at col-
ocated grid points. When the stream function formulation is used
he u x and u z components were computed from the values of the
tream function (defined at co-located locations) using a second-
rder centered scheme. For the cases where the primitive variable
ormulation was used u x and u z at collocated nodes were computed
y arithmetic averaging of the closest velocity components defined
t cell center surfaces, which also yields second-order accuracy. 

.3 TLBM : T her mal Lattice Boltzmann Method 

he Lattice Boltzmann Method (LBM) is an alternative approach
o classical numerical solutions to PDE’s for modelling fluid dy-
amics, such as the other two codes used for this benchmark, and it
s based on simulating the Boltzmann Equation on a discrete lattice
hen & Doolen ( 1998 ). In this approach, particle number densities
arrying mass are moved on a discrete lattice with collisions being
chie ved b y relaxing the number densities tow ards the Boltzmann
quilibrium distribution Bhatnagar et al. ( 1954 ). Historically, the
BM has been applied to simulating many fluid dynamics problems
ucci & Succi ( 2018 ) including multiphase flow in porous media
uang et al. ( 2015 ); Mora et al. ( 2021 ), plastic flows Leonardi

t al. ( 2015 ) and magnetohydrodynamics Dellar ( 2002 ). In the im-
lementation used here, the solution of the energy equation is added
o the standard LBM using a second number density carrying en-
rgy density. The buoyancy forcing associated to thermal expansion
s implemented through a Boussinesq term Peng et al. ( 2003 ). An
arly version of the code used for this benchmark has been used to
tudy Rayleigh number flow in the range Pr ∈ [1 , 5 × 10 000] and
a ∈ [1708 , 10 10 ] Mora & Yuen ( 2018 ). Recent efforts have shown
ow nonlinear rheology can be implemented and used to model
pontaneous emergence of plate tectonics from mantle convection

ora et al. ( 2024 ), multiphase LBM Mora et al. ( 2021 ) applied
o planetary accretion simulations Honarbakhsh et al. ( 2025 ) and
ombined with machine learning to extract model parameters from
imulation snapshots Ali Boroumand et al. ( 2024 ). In a recent yet
npublished implementation, convection at a record Ra = 10 15 has
een achieved Mora et al. ( 2023 ). 

The Thermal Lattice Boltzmann Method ( TLBM ) moves and col-
ides two distributions f α and g α representing a fluid’s mass and
nergy density where α is the movement direction on a discrete
-D or 3-D lattice. This is achieved in two steps of movement (or
treaming) and collision where collision is achie ved b y relaxing
he rele v ant distribution tow ards the Boltzmann equilibrium dis-
ribution. These two steps applied to f α yield the incompressible
avier–Stokes equations (Chen & Doolen 1998 ), and the two steps

pplied to g α yield the convection-diffusion equation describing en-
rgy density conservation (Kr üger et al. 2017 ). The addition of a
oussinesq buoyancy forcing term to the mass density f α leads to

he equations for thermal convection. 
The streaming step can be written as 

f α( x , t) = f α( x − c α�t, t − �t) , (12) 

nd 

g α( x , t) = g α( x − c α�t, t − �t) , (13) 

here the time step is �t = 1 lattice time units and c α is the ve-
ocity vector which points to adjacent lattice sites along axes or
iagonally on planes. Hence, c α�t = c α equals one lattice spacing
rtho gonall y or diagonally in a square or cubic unitary lattice with
x = 1 . As such, | c α�t | = �x for the α’s representing orthogonal

irections and | c α�t | = 

√ 

2 �x for the α’s along the diagonals of
ach 2-D plane. 

The macroscopic properties, density ρ, velocity u and energy
ensity ε relate to the number densities via 

= 

∑ 

α

f α , (14) 

 = (1 /ρ) 
∑ 

α

f αc α , (15) 

nd 

 = (1 /ρ) 
∑ 

α

g α , (16) 

here the energy density ε relates to temperature through T =
2 / ( D R )) ε where D is the number of dimensions and R is the gas
onstant which is set to unity for the usual non-dimensional TLBM
imulations. 

The collision step including the Boussinesq buoyancy forcing
erm can be written as 

f ∗α ( x , t) = f α( x , t) + � f C α ( x , t) + F 

B ( x , t) , (17) 

nd 

g ∗α( x , t) = g α( x , t) + �g C α ( x , t) , (18) 

here superscript ∗ indicates that the distributions are post collision,
F 

B is the Boussinesq buoyancy forcing term, and � f C α and �g C α

re the collision terms. These collision terms can be calculated
y relaxing the distributions f α and g α towards their equilibrium
istributions (Bhatnagar et al. 1954 ) using 

f C α = ( f eq 
α − f α) /τf , (19) 

g C α = ( g eq 
α − g α) /τg , (20) 

here τf and τg are relaxation times, which relate to kinematic
iscosity ν and thermal dif fusi vity κ through 

f = 

ν

c 2 s �t 
+ 0 . 5 = 3 ν + 0 . 5 , 

nd 

g = 

κ

c 2 s �t 
+ 0 . 5 = 3 κ + 0 . 5 , 

here c s = 1 / 
√ 

3 is the acoustic wave speed in the lattice. The
istributions f eq 

α and g eq 
α are the equilibrium distributions for f α
  2025
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and g α which can be calculated via a second order Taylor expansion 
of the Boltzmann equilibrium distribution as 

f eq 
α = ρw α

(
1 + 

c α · u 

c 2 s 

+ 

1 

2 

( c α · u ) 2 

c 4 s 

− 1 

2 

u 

2 

c 2 s 

)
, 

= ρw α

(
1 + 3( c α · u ) + 

9 

2 
( c α · u ) 2 − 3 

2 
u 

2 

)
, (21) 

and 

g eq 
α = ε f eq 

α , (22) 

where w α are the lattice weights which sum to unity and differ in 
2-D and 3-D. These will be detailed in the following subsections. 

The Boussinesq buoyancy forcing term F 

B is given 
by 

F 

B 
α = −3 w αρβδT c α · g , (23) 

where β is the thermal expansion coefficient, δT is the temperature 
perturbation and g is the acceleration due to gravity. 

While the above equations are correct for both 2-D and 3-D 

setups, weight vectors w α and velocity vectors c α are different in 2- 
D and 3-D, as they depend on the lattice dimensions and structure. 
The standard TLBM D dQ q notation is used here where d is the 
number of dimensions in space, and q is the number of velocity 
vectors used for the lattice. All TLBM simulations in this benchmark 
use a D2Q9 lattice ( d = 2 dimensional, q = 9 velocity vectors) 
whose weights are: 

w α = ( w 0 , w 1 , w 1 , w 1 , w 1 , w 2 , w 2 , w 2 , w 2 ) (24) 

where w 0 = 4 / 9 , w 1 = 1 / 9 and w 2 = 1 / 36 , and the velocity vectors
are 

c α = 

[(0 , 0) , 
(1 , 0) , (0 , 1) , ( −1 , 0) , (0 , −1) , 
(1 , 1) , ( −1 , 1) , ( −1 , −1) , (1 , −1)] 

. (25) 

For TLBM the Nusselt number was calculated using the temperature 
gradient by finite differences of the second and third cells above 
the boundary, and b y horizontall y averaging the gradient with an 
arithmetic mean. RMS velocities were calculated as the square root 
of the average of the square of the velocity magnitude for each cell 
of the computing domain. 

4  R E S U LT S  

We analyze the results in three steps. First we quantitati vel y com- 
pare the asymptotic time and space averaged values for each sim- 
ulation, and compare them with the infinite Pr solution for free 
slip boundary conditions. Second, we look at the space-averages 
of V rms and Nu through time, which show that long-term solutions 
can be steady , oscillatory , or chaotic. This analysis is more quali- 
tati ve, since dif ferences between the results of the different codes 
can be of several types, in some cases in the initial transient phase, 
in others with the emergence of a time-shift, for example for peri- 
odic solutions, in others still these differences emerge towards the 
asymptotic phase. Finally, in a final subsection, we discuss the re- 
sults of a resolution test for the most turbulent case, Ra = 10 6 and 
Pr = 1 . 

Prior to diving into the time-dependent solutions, we show 

in Figs 2 and 3 the final step of the T and V rms fields for 
all the simulations tested from TLBM results, to illustrate the 
variety of fields obtained. Some of these solutions are steady- 
state, others are just one snapshot in time of a transient 

field. 20
4.1 Asymptotic solutions 

Similarl y to pre vious benchmarks, we aim at comparing the average 
V rms and Nu at steady-state, if it exists. V rms and Nu are calculated as 
the a verage betw een elapsed times t = 0 . 25 and t = 0 . 35 . The 72
solutions, obtained with the three codes for each of the 24 bench- 
marks, are summarized in two tables, one for the 12 benchmarks 
with no-slip BCs (Table 1 ) and the other 12 for free slip BCs (Ta- 
ble 2 ). 

Since the benchmark was initially designed as an extension of the 
Blankenbach test (Blankenbach et al. 1989a ), we can compare the 
solutions with free slip BCs with the infinite Pr number solutions 
emerging from that collecti ve ef fort. It is expected that for a suffi- 
ciently high Pr the solution will converge to the infinite Pr solution, 
therefore the Blankenbach results are placed in two special columns 
in Table 2 , one column for the tabulated V rms and one for Nu . 

For the no-slip case, no benchmarks are available in the litera- 
ture, therefore we compare the three solutions (Table 1 ). Differences 
appear between the codes, generally of 1 per cent or less, but oc- 
casionally for the most turbulent cases, up to 10 per cent for Nu . 
Several hypotheses are possible to justify the observed dissimilar- 
ities. They might be related to the different implementation of the 
no-slip BCs in the different numerical approaches, as well as the re- 
quired resolution close the boundary of each implementation. Here 
the main results in more detail: 

(i) For Ra = 10 4 , regardless of Pr the discrepancies between 
steady-state V rms solutions are small, the largest being between GAIA 
and StreamV for Pr = 1 , where the two solutions differ by less than 
1 per cent. For Pr = 1000 , the largest discrepancy, between TLBM 
and StreamV is 0.5 per cent. The Nu values are also consistent, 
but TLBM displays systematically smaller values than the other two 
codes, by about 1 per cent for Pr up to 100, but increasing for larger 
Pr up to ≈ 5 per cent for Pr = 1000 . This anomaly is discussed in 
Section 5 . 

(ii) For Ra = 10 5 the code discrepancies in both V rms and Nu 
are also within 1 per cent for Pr = 1 and Pr = 10 . Interestingly, 
for Pr = 100 and Pr = 1000 , when the stable oscillatory solution 
arises, and averages are affected by the shift of oscillations between 
different solutions, V rms discrepancies remain below 3 per cent and 
Nu below 2 per cent across all codes. 

(iii) For Ra = 10 6 larger differences are to be expected, since 
chaotic solutions appear diverse in the time-dependent plots (Fig. 8 ). 
Interestingl y, the largest dif ferences are not seen in V rms whose 
v alues are generall y within 5 per cent from each other, but increase 
for Nu for which the three codes predict values that differ up to 10 
per cent for Pr = 1 and for Pr = 1000 . 

Free slip solutions show a high degree of coherence. In particular: 

(i) For Ra = 10 4 , Nu for the three codes remains within 1 per cent 
from each other , ho we ver dif ferences appear for Pr = 1 , where GAIA 
displa ys low er V rms of about 3 per cent compared to the other codes. 
For increasing Pr , both GAIA and StreamV con verge to wards the 
Blankenbach benchmark results, and for Pr = 1000 discrepancies 
remain within the order of 0.1 per cent while TLBM V rms differs from 

the other codes by ≈ 1 per cent , and by ≈ 0 . 2 per cent for Nu . 
(ii) For Ra = 10 5 , only differences on the order of 1 per cent in 

V rms and 0.5 per cent for Nu between the codes appear for Pr = 1 . 
These differences remain of the same magnitude with increasing Pr 
and substantially all codes converge to the Blankenbach benchmark 
for Pr = 1000 , with the largest discrepancy being for TLBM V rms 

which is however only of about 1 per cent. 
(iii) Results for Ra = 10 6 are more complex, showing sub- 

stantial differences. In general, while for lower Ra asymptotic 
25
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Figure 2. Last step ( t = 0 . 35 ) of the Temperature solutions for the 24 tests performed in this work, as obtained by the TLBM code. The top three rows and the 
left column represent steady-state solutions, while the others capture only a transient outcome. The colourbars are not shown, as they all go from 0 to 1. 
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8 G. Morra et al . 

Figure 3. Last step ( t = 0 . 35 ) of the V rms solutions for the 24 tests performed in this work, as obtained by the TLBM code. The top three rows and the left 
column represent steady-state solutions, while the others capture only a transient behaviour. 

for Nu . 
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values of V rms and Nu are almost identical between Pr = 100 
and Pr = 1000 , differences between the three codes solutions 
of over 10 per cent appear for the more chaotic Ra = 10 6 . 
As for lower Ra values, all three codes converge towards the 
Blankenbach solution for Pr = 1000 , however TLBM and StreamV 
decrease from larger values while GAIA increase from lower val- 
ues. As for the other Ra cases, TLBM asymptotic values are 
more distant from the Blankenbach benchmark compared to the 
other codes, this time by ≈ 2 per cent for V rms and ≈ 8 per cent 
r 2025

art/ggaf221_f3.eps
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Table 1. Asymptotic results for the 12 models with no-slip boundary conditions. Each value is calculated as the average 
of either V rms or Nu from elapsed time 0.25 to 0.35. For some of the values this is the asymptotic steady results, while 
for others it is the average of either an oscillating or chaotic evolution. 

Ra Pr V rms V rms V rms Nu Nu Nu 
( G AI A ) ( T L B M ) ( StreamV ) ( GAIA ) ( TLBM ) ( StreamV ) 

10 4 1 14.1582 14.2523 14.2695 2.1658 2.1503 2.1685 
10 4 10 14.3537 14.3748 14.3834 2.1935 2.1761 2.1937 
10 4 100 14.3796 14.4015 14.4013 2.1971 2.1776 2.1970 
10 4 1000 14.3823 14.3335 14.4031 2.1975 2.0911 2.1974 
10 5 1 59.2178 59.9361 59.8292 3.9496 3.9289 3.9502 
10 5 10 57.5382 57.4327 57.3724 3.8817 3.8548 3.8837 
10 5 100 47.4895 48.8831 49.0001 3.6524 3.6407 3.6744 
10 5 1000 48.1087 48.4175 48.7041 3.6420 3.6581 3.6914 
10 6 1 190.2591 193.7325 186.0280 6.5106 6.3222 6.0547 
10 6 10 188.7059 189.7797 188.4033 6.4951 6.7288 6.7674 
10 6 100 202.9567 188.1784 197.0433 7.1618 6.6849 7.2269 
10 6 1000 203.6610 203.0634 194.8239 7.1929 6.8176 7.4162 

Table 2. Asymptotic results for the nine models with free slip boundary conditions. Each value is calculated as the average of either V rms or Nu from elapsed 
time 0.25 to 0.35. 

Ra Pr V rms V rms V rms V rms (inf Pr) Nu Nu Nu Nu (inf Pr) 
GAIA TLBM StreamV Bench GAIA TLBM StreamV Bench 

10 4 1 43.8644 44.1416 43.8499 4.9867 5.0103 4.9875 
10 4 10 42.7317 43.0695 42.7758 4.8703 4.8860 4.8620 
10 4 100 42.8608 43.1158 42.8147 4.8900 4.8977 4.8774 
10 4 1000 42.8821 43.1362 42.8264 42.8650 4.8933 4.8985 4.8802 4.8844 
10 5 1 213.5101 216.5428 213.2021 11.7162 11.7501 11.7056 
10 5 10 198.5696 202.8932 200.1335 10.9062 10.9585 10.9285 
10 5 100 193.2970 195.4603 192.9620 10.5298 10.4897 10.5075 
10 5 1000 193.4660 195.3945 192.9663 193.2145 10.5408 10.4772 10.5127 10.5341 
10 6 1 987.9038 1019.7103 970.8799 26.0767 24.9414 25.8593 
10 6 10 797.8585 845.2052 829.9934 19.8642 19.7807 20.5083 
10 6 100 758.6200 753.9583 740.3633 19.9635 18.7409 19.9568 
10 6 1000 832.9202 828.2744 832.9149 833.9898 21.8342 20.3057 21.9043 21.9725 
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.2 Time-dependent solutions 

igs 4 to 9 show the time-dependent values of the space-averaged
oot mean square of the velocity field V rms and Nusselt number
u for the 24 benchmark simulations with both no-slip and free

lip boundary conditions, for each Rayleigh number Ra = 10 4 , 10 5 

r 10 6 and Prandtl number Pr = 1 , 10 , 100 , 1000 . The top panels
how the results of GAIA , the middle panels of TLBM and the bottom
anels the ones of StreamV . V rms results for the three codes show
 pattern that is in agreement for both the low and intermediate
a ( 10 4 and 10 5 ), regardless of the value of Pr and regardless of

he fact that the solution displays very different regimes, ranging
rom a rapid convergence to steady-state ( Ra = 10 4 ) to oscillatory
ehaviour ( Ra = 10 5 ). Differences appear when transitioning to a
haotic dynamics ( Ra = 10 6 ) where small fluctuations naturally
roduce long-term differences. 

In summary the main results on which the three approaches con-
erge are: 

(i) Regardless of the boundary conditions, the flow for Ra = 10 4 

s laminar, and e volves tow ards a steady-state solution whose V rms 

nd Nu values depend very weakly on Pr . Interestingly, V rms displays
ore oscillations for free slip boundary conditions compared to no-

lip and larger oscillations for Pr = 10 compared to either higher
r lower Pr values, indicating the emergence of a resonance for
his specific set of boundary conditions. For this low Ra value,
he results at Pr = 100 and Pr = 1000 are nearly identical showing
arly convergence to infinite Pr solutions. We observe that TLBM
oes not capture Nu solutions at Pr = 1000 showing a departure
rom Pr = 100 and Pr = 10 , which are instead consistent with the
ther codes. Reasons for this are discussed in Section 5 . 
(ii) The results for Ra = 10 5 differ from the ones obtained at

a = 10 4 being strongly dependent on the boundary conditions. 

(a) For no-slip boundary conditions an oscillatory solution ap-
ears for Pr = 1 and dissipates within the time frame considered.
t is almost completely absent for Pr = 10 but then reappears for
r ≥ 100 where it shows wide V rms and Nu oscillations and does
ot dissipate through time. We show snapshots of this oscillatory
attern in Fig. 10 where it is clear that no-slip boundary conditions
avor the oscillations by the hot source at the sides and bottom of the
omain. Even if this outcome is strongly dependent on the no-slip
Cs, it is remarkable that it does not appear for any other Ra and
r values. Pr = 1000 and Pr = 100 solutions of the three codes are
lmost indistinguishable, indicating early convergence to infinite Pr
olutions. 

(b) For free slip BCs, Ra = 10 5 solutions are remarkably different
rom no-slip BCs, but show features that already emerged in the
a = 10 4 results. Damped oscillations appear for Pr = 1 but are
onsiderably larger for Pr = 10 where they persist almost until the
nd of the simulation (elapsed time t = 0 . 35 ), whereas oscillations
or larger Pr (100 and 1000) are damped very rapidl y. Interestingl y,
he three methods all find a different transient solutions between
r = 100 and Pr = 1000 , suggesting that convergence to infinite
  2025
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Figure 4. Comparison of the time evolution of V rms (left) and Nusselt number Nu (right) for the GAIA (top), TLBM (middle) and StreamV (bottom) codes 
for Ra = 10 4 bounded by no-slip boundary conditions, for Prandtl numbers 1, 10, 100 and 1000. In the legend Pr = 1000 is placed last since this its graphs 
overlaps all others. 
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Pr requires at least Pr = 1000 , even if the asymptotic is almost 
identical between Pr = 100 and Pr = 1000 . 

(iii) Solutions at Ra = 10 6 are again different between free slip 
and no-slip boundary conditions. Nevertheless, all codes show that 
for both BCs results are mildly oscillatory for Pr = 1 and quickly 
converge to a steady-state solution, while for Pr ≥ 10 the dynam- 
ics becomes chaotic. This transition to chaos is unlikely related 
to Reynolds type of turbulence, due to the larger damping of the 
flow at high Pr , where momentum diffusion (kinematic viscosity) 
is higher compared to heat diffusion. This is further discussed in 
Section 5 . 
 2025
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Figure 5. Time evolution of V rms (right) and Nusselt number Nu (left) for the GAIA (top), TLBM (middle) and StreamV (bottom) codes for Ra = 10 4 with free 
slip boundary conditions, for Prandtl numbers 1, 10, 100 and 1000. 
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(a) For no-slip boundary conditions, Fig. 8 shows that for
r ≥ 10 , all methods agree that a chaotic behaviour appears with a
requency independent or very weakly dependent on Pr . Although
he system does not converge to a unique steady-state solution, it
tabilizes towards steady average V rms and Nu , whose values are
iscussed in Section 4.1 . Solutions for Pr ≥ 10 differ between the
ifferent modelling approaches, as expected for a chaotic system,
here the long-term solutions are highly dependent on small dif-
erences. Solutions for Pr = 1000 do not display substantial differ-
nces from smaller Pr , demonstrating early convergence to infinite
r solutions, similarly to the other no-slip BCs solutions. 
(b) Free slip BCs solutions, shown in Fig. 9 , display the highest

V rms magnitude observed. Since, as shown below, the Reynolds
umber is Re = V rms / Pr , chaotic solutions are observed for low Re
 r 2025
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12 G. Morra et al . 

Figure 6. Comparison of the time evolution of V rms (right) and Nusselt number Nu (left) for the GAIA (top), TLBM (middle) and StreamV (bottom) codes for 
Ra = 10 5 with no-slip boundary conditions, for Prandtl numbers 1, 10, 100 and 1000. 
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(high Pr ), therefore they are unlikely caused by Reynolds type of 
turbulence. All methods show a transition to chaotic solutions for 
Pr ≥ 10 , however with remarkably different outcomes, as discussed 
below. All three codes find that oscillations for Pr = 10 are small but 
become larger for Pr = 100 , until all methods converge to similar 
steady-state solution for Pr = 1000 , which matches the infinite Pr 
case, as discussed in Section 4.1 . 
r 
4.3 Resolution test 

The nominal spatial resolution adopted for each numerical code is 
very different, ranging from 64 × 64 for StreamV (except for cases 
at Ra = 10 6 and Pr = 1 where the nominal resolution was set to 
128 × 128 ) to 150 × 150 for GAIA and 512 × 512 for TLBM , and 
w as empiricall y chosen b y each modeller depending on the knowl- 
edge of the employed software and on the computational power 
2025
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Figure 7. Comparison of the time evolution of V rms (right) and Nusselt number Nu (left) for the GAIA (top), TLBM (middle) and StreamV (bottom) codes for 
Ra = 10 5 with by free slip boundary conditions, for Prandtl numbers 1, 10, 100 and 1000. 
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ufficient, we performed a resolution test for the ‘most demanding’
ase corresponding to the highest Ra and lowest Pr values consid-
red in our benchmarks, where the turbulence reaches its maximum
equiring the finest resolution. For this case, we tested the no-slip
oundary condition for the four resolutions: 64 × 64 , 128 × 128 ,
56 × 256 and 512 × 512 . The results for both V rms and Nu are
hown in Fig. 11 . 

We observe that all codes converge to the same solution for suf-
cientl y high resolution. Howe ver, for this specific turbulent case,

ow resolution can result in dif ferent, likel y incorrect, solutions.
treamV offers a good approximation of the common solution
ber 2025
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Figure 8. Comparison of the time evolution of V rms (right) and Nusselt number Nu (left) for the GAIA (top), TLBM (middle) and StreamV (bottom) codes for 
Ra = 10 6 with no-slip boundary conditions, for Prandtl numbers 1, 10, 100 and 1000. 
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already at a resolution of 64 × 64 , and its solution already con- 
verges at a resolution of 128 × 128 . 

Because all other cases shown in this benchmark are less turbu- 
lent, the adopted 64 × 64 resolution is justified in this work with 
this code. Indeed, we checked that results obtained with StreamV 
for finer grids were not significantly different from those obtained 
on a 64 × 64 grid for the other less turbulent cases. TLBM con- 
verges to the correct solution at a resolution of 256 × 256 for V rms 

but requires 512 × 512 to obtain the correct Nu . Since all mod- 
els in this benchmark were obtained with this code at this higher 
resolution, the results appear justified. GAIA reaches a good ap- 
proximation of the common solution already at a resolution of 
r 2025
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Figure 9. Comparison of the time evolution of V rms (right) and Nusselt number Nu (left) for the GAIA (top), TLBM (middle) and StreamV (bottom) codes for 
Ra = 10 6 with by free slip boundary conditions, for Prandtl numbers 1, 10, 100 and 1000. 
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28 × 128 , however the solution converges only for a mesh of
12 × 512 for this turbulent case. This provides an explanation
or some discrepancies observed between the three codes with the
ominal spatial resolution of 150 × 150 adopted for GAIA for all
ases (except the resolution test). Ho wever , since the turbulence of
his resolution test is the highest, we believe that the resolution was
ufficient for most cases. 
We tested the effect of the formalism used (primitive variables
ersus stream function) on the convergence and the accuracy of
he solution by performing an additional set of resolution test with
treamV using a primitive variable formulation (see Section 3.2
or further details) on regular staggered grids with up to 256 × 256
quare cells. The results are displayed in Fig. 11 . We found that
he primitive variable formulation solutions compare well with the
 er 2025
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Figure 10. Sequence of snapshots of the oscillatory mode with no-slip boundary conditions for Pr = 100 and Ra = 10 5 . Top: temperature ( T min = 0 and 
T max = 1 ). Bottom: root mean square of the velocity ( V min = 0 and V max = 100 ). 
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stream function solutions both in terms of accuracy and convergence 
rate. This indicates that the formulation does not play a significant 
role, in agreement with previous works (Deubelbeiss & Kaus 2008 ). 
This suggests that the faster convergence rate for StreamV may be 
due to differences in solving the conservation of energy between 
the three different codes. 

5  D I S C U S S I O N  

While all codes predicted the same general dynamics, the origin of 
some discrepancies are worth being discussed. Interestingly, there 
are no two codes that agree on every solutions. Yet, often two 
codes show matching solutions with the third slightly differing. 
This does not demonstrate that the two matching codes show the 
correct solutions; ho wever , it offers indications. 

Differences between solutions of the three codes for Ra = 10 4 are 
virtually absent for both no-slip and free slip boundary conditions 
(Fig. 4 ) (Fig. 5 and Section 4.1 ). For Ra = 10 5 , Pr = 10 and no- 
slip BC, only TLBM and StreamV show matching solutions in the 
transient phase ( t < 0 . 1 ) (Fig. 6 ). For the oscillatory solution ( Pr = 

100 and Pr = 1000 ), only a mild time-shift appears between the two 
Pr cases, different for the three codes, less for StreamV and more 
for TLBM , but not larger than �t ≤ 0 . 01 . 

5.1 Regime diagram for oscillatory and chaotic solutions 

Our results show a richer set of solutions than initially anticipated. 
Indeed, we expected a more predictable transition from low to 
high Pr and from low Ra to high Ra . To better understand how 

the system transitions from a steady to oscillatory mode for no- 
slip boundary conditions and R = 10 5 , we tested a wide range 
of intermediate values, besides the ones of the benchmark and 
found a sudden transition at Pr ≈ 10 . The V rms for values of Pr 
between 7 and 14 are shown in Fig. 12 . For lower values, the sys- 
tem is steady, while for a greater Pr oscillations suddenly appear 
all with comparable amplitudes. Observation of the oscillatory so- 
lution shows that it is related to the fixed boundary conditions in 
temperature, which are a consequence of the zero velocity at the 
boundary of the domain. The spontaneous emergence of the os- 
cillations can be also seen as the result of a competition between 
momentum and thermal diffusion, since Pr is the ratio of these two 
processes. 
 2025
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Figure 11. Resolution test of the GAIA (top), TLBM (middle) and two versions of the StreamV (bottom) codes for the Ra = 10 6 bounded by no-slip boundary 
conditions, and Pr = 1 . All codes converge to the same solution. StreamV converges at a coarser resolution regardless whether stream function or the primitive 
variables formulation is chosen. 
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Figure 12. TLBM solutions of V rms for the Ra = 10 5 and no slip boundary conditions for Prandtl number values in the vicinity of Pr ≈ 10 . These results were 
confirmed by a set of solutions obtained with StreamV . 
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It would be certainly interesting to fully map the dependency 
of the transition to the oscillatory behaviour in function of Ra and 
Pr , given that one can speculate that the critical Pr at which the 
transition emerges is related to Ra . As shown in previous works that 
hav e inv estigated Pr dependent transitions to oscillatory and chaotic 
system of fluid-dynamic cases, this will likely also depend on the 
box geometry and initial conditions Henry & Buffat ( 1998 ) and 
Stojanovi ́c et al. ( 2024 ). This type of setup can have implications 
in v olcanology, w here pulsating , repetitive periodic dynamics are 
common, Pr is in the same ballpark no-slip boundary conditions can 
mimic a volcanic conduit. We believe that a more accurate model 
for the implication of this solution to geophysical problems such as 
volcanic conduits should be done in a separate dedicated study. 

Interesting behaviour also emerge for free-slip boundary con- 
ditions. For example, damped oscillations appear at intermediate 
Pr values for Ra = 10 5 while for both smaller and larger Pr val- 
ues, they do not appear. This kind of resonance is likely related 
to the same physics behind the oscillations in the no slip case. 
For higher energies ( Ra = 10 6 ) the oscillations become chaotic 
fluctuations. Similar to the Ra = 10 5 case, we explored the Pr - 
controlled dynamic transition from steady state ( Pr = 1 ) to chaos 
( Pr = 10, 100) and then back to steady state ( Pr = 1000). We tested 
Pr = 4 , 8 , 16 , 32 , 64 , 128 , 256 , 512 , 1024 and measured the stan-
dard deviation of V rms in the final stage of the simulations (elapsed 
time t > 0 . 25 ), representative of the asymptotic results (Fig. 13 ). In 
contrast to the transition to an oscillatory pattern, the transition to 
chaos and back is smooth, starting between Pr ≈ 8 and Pr ≈ 10 , it 
then reaches a peak just before Pr ≈ 100 and then decreases until a 
more laminar flow appears again for Pr ≈ 200 . In this case as well, 
a map of the transitions should be developed in function of both 
Pr and Ra . Possibly, lateral boundary conditions could be involved, 
as well as the domain aspect ratio, and conditions might change in 
3-D. This interesting investigation extends beyond the purpose of 
this work. 

Although we observe chaotic solutions at Ra = 10 6 , they are 
likely not related to Kolmogorov turbulence, which becomes 
significant at high Rey nolds numbers ( Re ). This is evident for the 
most energetic case, characterized by the higher speeds, Ra = 10 6 , 
where chaos is present at intermediate values of Pr . One can demon- 
strate that this chaotic solution is not related to Re . Re can be directly 
extrapolated from V rms . The renormalized value of V rms is V L/κ

where V is the solution emerging from each code, and κ is the 
thermal dif fusi vity. One obtains that the renormalized root mean 
square of the velocity is V rms = V ( L/ν) ( ν/κ) = Re Pr . Since V rms 

remains of the same order of magnitude with increasing Pr , then 
Re is inversely proportional to Pr , which is at odd with the obser- 
vation that chaos initiates at a suf ficientl y high v alue of Pr . This 
implies that Kolmogorov turbulence is not causing these chaotic 
solutions. In general, for Kolmogorov driven turbulence at Pr ≈ 1 , 
Re ≈ Ra 0 . 4 −0 . 5 (e.g. Grossmann & Lohse 2000 ; Salvador & Samuel 
2023 ; Walbecq et al. 2024 , and references therein), for Pr = 1 , but 
Kolmogorov turbulence becomes dominant only at much higher Ra . 

The richness of these results suggest that intermediate Prandtl 
number simulations Pr ∈ [1 − 1000] should be carefully investi- 
gated for the potential applications in geodynamics and volcanol- 
ogy, but this goes beyond the scope of this paper. 

5.2 T her mal Lattice Boltzmann Method at high Prandtl 
Number 

For the highest Pr value tested ( Pr = 1000 ), TLBM asymptotically 
differs of a few percent from the other two codes and from estab- 
lished infinite Pr solutions, when they are available. Examples are 
Ra = 10 6 and free slip where both StreamV and GAIA are within 
0.1 per cent from the known solution, while TLBM is about 1 per cent 
off from the known value. Correspondingly, Nu is about 7 per cent 
below the expected value. A similar discrepancy is present for the 
asymptotic Nu value of Ra = 10 4 , Pr = 1000 , no-slip , where Nu is 
5 per cent lower from matching StreamV and GAIA solutions. 

Our tests have shown that increasing numerical precision of the 
TLBM simulations from 32 to 64 bits has improved the solutions 
 2025
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Figure 13. Standard deviation of V rms and of Nu in function of Pr for the Ra = 10 6 and free slip boundary conditions for increasing powers of two of Pr 
obtained with the TLBM code for time > 0 . 1 . The non-zero values of the standard deviation is an indicator of the intensity of the fluctuations. 
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t very high Pr . This can be understood by looking at the Mach
umbers of each case. Focusing only on the free slip cases, where
peeds are greater, for Ra = 10 4 the maximum measured Mach
umber at any step in the second half of the simulations is be-
ween 0.000 44 and 0.0022, for Ra = 10 5 it is between 0.0023
nd 0.011, however for Ra = 10 6 it is between 0.028 and 0.092
 Pr = 100 ). Because compressibility affects fluid-dynamic solu-
ions more at greater Mach numbers, Mach numbers between 0.05
nd 0.09 could possibly justify some discrepancies. However in
onsideration that these are the highest values reached in the entire
omain, across 500 recorded timesteps, we suggest an alternative
xplanation. 

As detailed in Section 3.3 , for very high Pr such as Pr = 1000 ,
inematic viscosity is 1000 times greater than thermal dif fusi vity.
ince the momentum relaxation time τf = 0 . 5 + ν/c 2 = 0 . 5 + 3 ∗
and similarly τg = 0 . 5 + 3 ∗ κ , when Pr is very high, κ must be

xtremely low, and therefore high numerical precision is necessary
o correctly calculate the relaxation of the thermal energy density

g. 
Our implementation of the couple of thermal and momentum

olvers in LBM is only one of the possible approaches to the
roblem. An alternative method was proposed in Parmigiani et al.
 2009 ) where they introduced a new multiscale approach based
n the implicit dependence of the Pr number on the relaxation
ime. 

.3 Computational efficiency 

o far, we did not discuss the computational efficiency of the dif-
erent approaches. Since they are based on distinct assumptions and
pproximations con verging to wards the solution of the NS equa-
ions, the methods are expected to perform dif ferentl y at distinct
r . 
TLBM works optimally for Pr ≈ 1 since the relaxation times τf and

g are equal. A new version of the code, not used in this benchmark,
as been just developed, in which the timestep is adaptive, based on a
ifferent lattice viscosities calibrated to maintain the relaxation time
ot too close to 0.5 while at the same time keep the Mach number
uf ficientl y low. Its testing is however postponed to a follow up
ublication. Regarding parallel performance, because it requires no
atrix operations, TLBM scales linearly on HPC (High-Performance
omputing) clusters, as demonstrated elsewhere up to 300 000 cores
Mora et al. 2024 ). 
GAIA is also more efficient at smaller Pr , based on its present

ormulation which is based on treating the 1 / Pr term of the NS
quations as a forcing term and iterating. With increasing Pr , the
pectral radius of the Navier Stokes equations increases, therefore
equiring many more iterations. For example for the free-slip and
a = 10 6 case, The number of iterations necessary to reach a 10 −8 

olerance are 1930 for the infinite Pr case, 94 for Pr = 100 and just
8 for Pr = 1 . 

The specific formulation used in StreamV is optimal for low Pr
umbers because of the explicit time stepping used (see eq. 11 ).
or large Pr values ( > 10 ) the time step becomes smaller than the
ne associated with an adv ectiv e CFL (Courant-Friedrichs-Lewy)
riterion. This limitation could, ho wever , be removed by using high-
rder semi-implicit schemes. 

 C O N C LU S I O N S  

o benchmark existing codes that model convection at low Prandtl
umbers, we proposed and performed tests, all confined in a 1 × 1
ox, with the same thermal boundary conditions ( T = 1 at the
ottom, T = 0 at the top) and varying Rayleigh number as in pre-
ious benchmarks ( Ra = 10 4 , Ra = 10 5 , Ra = 10 6 ) (Blankenbach
t al. 1989a ). We extended pre vious benchmarks b y considering the
ffect of a finite Prandtl number, by considering four values of Pr ,
hich cover the cases ranging from the magma ocean stage ( Pr = 1 )

o quasi solid-state mantle convection ( Pr = 1000 ), comparing the
utcome of intermediate values ( Pr = 10 and Pr = 100 ) as well.
or every set of values, we tested two types of boundary conditions
 no-slip and free slip ). All the combinations form a total suite of 24
ases. 

While se veral pre vious benchmarks (e.g. Blankenbach et al.
989a ) focused on testing the steady-state solution, we find that
y investigating the transient from a common initial condition it is
ossible to explore sometimes unexpected behaviours, such as the
nes found at intermediate Prandtl numbers ( Pr = 10 to Pr = 100 ),
s well as unexpected effects observed when changing the veloc-
ty boundary conditions. Overall, notwithstanding occasional dif-
erences, the three codes broadly showed the same outcome and
ransition from steady to oscillatory and to turbulent behaviour for
he same Pr , Ra and BCs. We therefore conclude that the distinct
 025
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approaches used for the different codes are suitab le and reliab le for 
geodynamic investigation of systems ranging from a magma ocean 
to solid-state mantle convection, across volcanic to planetary scales. 
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