Villarraga-Gómez, Herminso und Brackman, Paul und Ziabari, Amirkoushyar und Rahman, Obaidullah und Snow, Zackary und Shahani, Ravi und Bugelnig, Katrin und Andreyev, Andriy und Trenikhina, Yulia und Johnson, Nathan und Bale, Hrishikesh und Schulz, Julian und Santos, Edson Costa (2025) Multiscale Characterization of Additive Manufacturing Components with Computed Tomography, 3D X-ray Microscopy, and Deep Learning. Journal of Nondestructive Evaluation. Springer Nature. doi: 10.1007/s10921-025-01231-8. ISSN 0195-9298.
![]() |
PDF
- Verlagsversion (veröffentlichte Fassung)
5MB |
Kurzfassung
Additive manufacturing (AM) facilitates the creation of complex-geometry parts, driving advancements in lightweight aerospace components, high-efficiency engine cooling channels, and customized medical implants. However, ensuring the quality and reliability of AM parts remains challenging due to internal defects, surface irregularities, porosity, and residual trapped powder, which are often inaccessible to traditional inspection methods. Recent developments in X-ray computed tomography (XCT) and 3D X-ray microscopy (XRM), particularly systems equipped with resolution-at-adistance (RaaD™) capabilities, enable high-resolution, non-destructive evaluation of AM components across multiple scales, from sub-micrometer to macroscopic levels. This paper explores modern XCT and XRM techniques for multiscale characterization of AM parts, focusing on their ability to detect and analyze defects such as porosity, cracks, inclusions, and surface roughness, while offering insights into defect formation mechanisms, material properties, and process-induced variations. The integration of deep learning (DL) frameworks, including Simurgh, DeepRecon, and DeepScout, enhances XCT/XRM workflows by reducing scan times, improving resolution recovery, and enabling accurate defect detection even with limited projection data. These DL-based methods overcome limitations of traditional reconstruction techniques, enabling faster, more reliable characterization of dense materials like Inconel 718 and novel alloys such as AlCe. Applications include process parameter optimization, high-throughput quality control, and multistage AM process evaluation, with DL-enhanced workflows accelerating analysis times from weeks to days. Correlative imaging approaches further validate XCT and XRM data against scanning electron microscopy (SEM) images of physically sectioned samples, confirming the accuracy of DL-based reconstructions and enabling comprehensive defect analysis. While challenges remain in generalizing DL models to diverse materials and imaging conditions, improvements in resolution, noise reduction, and defect detection highlight the transformative potential of these methods. This multiscale and correlative approach enables precise identification and correlation of microstructural features with the overall performance of AM components. By integrating advanced XCT, XRM, and DL techniques, this paper demonstrates a significant leap forward in AM characterization, offering valuable insights into the relationships between processing parameters, microstructure, and part performance, and driving innovations that enhance the quality and reliability of AM products for demanding industrial applications.
elib-URL des Eintrags: | https://elib.dlr.de/215942/ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Titel: | Multiscale Characterization of Additive Manufacturing Components with Computed Tomography, 3D X-ray Microscopy, and Deep Learning | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Datum: | 2025 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Erschienen in: | Journal of Nondestructive Evaluation | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DOI: | 10.1007/s10921-025-01231-8 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Verlag: | Springer Nature | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ISSN: | 0195-9298 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Stichwörter: | X-ray microscopy · Computed tomography · Non-destructive evaluation · Additive manufacturing · Deep learning | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
HGF - Programmthema: | Umweltschonender Antrieb | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | L CP - Umweltschonender Antrieb | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Werkstoffe und Herstellverfahren | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Werkstoff-Forschung > Metallische und hybride Werkstoffe | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Hinterlegt von: | Bugelnig, Katrin | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Hinterlegt am: | 26 Aug 2025 08:58 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Letzte Änderung: | 28 Aug 2025 11:13 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags