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Abstract
Additive manufacturing (AM) facilitates the creation of complex-geometry parts, driving advancements in lightweight 
aerospace components, high-efficiency engine cooling channels, and customized medical implants. However, ensuring 
the quality and reliability of AM parts remains challenging due to internal defects, surface irregularities, porosity, and 
residual trapped powder, which are often inaccessible to traditional inspection methods. Recent developments in X-ray 
computed tomography (XCT) and 3D X-ray microscopy (XRM), particularly systems equipped with resolution-at-a-
distance (RaaD™) capabilities, enable high-resolution, non-destructive evaluation of AM components across multiple 
scales, from sub-micrometer to macroscopic levels. This paper explores modern XCT and XRM techniques for multiscale 
characterization of AM parts, focusing on their ability to detect and analyze defects such as porosity, cracks, inclusions, 
and surface roughness, while offering insights into defect formation mechanisms, material properties, and process-induced 
variations. The integration of deep learning (DL) frameworks, including Simurgh, DeepRecon, and DeepScout, enhances 
XCT/XRM workflows by reducing scan times, improving resolution recovery, and enabling accurate defect detection 
even with limited projection data. These DL-based methods overcome limitations of traditional reconstruction techniques, 
enabling faster, more reliable characterization of dense materials like Inconel 718 and novel alloys such as AlCe. Applica-
tions include process parameter optimization, high-throughput quality control, and multistage AM process evaluation, with 
DL-enhanced workflows accelerating analysis times from weeks to days. Correlative imaging approaches further validate 
XCT and XRM data against scanning electron microscopy (SEM) images of physically sectioned samples, confirming the 
accuracy of DL-based reconstructions and enabling comprehensive defect analysis. While challenges remain in general-
izing DL models to diverse materials and imaging conditions, improvements in resolution, noise reduction, and defect 
detection highlight the transformative potential of these methods. This multiscale and correlative approach enables precise 
identification and correlation of microstructural features with the overall performance of AM components. By integrating 
advanced XCT, XRM, and DL techniques, this paper demonstrates a significant leap forward in AM characterization, 
offering valuable insights into the relationships between processing parameters, microstructure, and part performance, 
and driving innovations that enhance the quality and reliability of AM products for demanding industrial applications.
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1  Introduction

AM has advanced significantly, enabling the production of 
industrial components with intricate geometries directly 
from digital design models, eliminating the need for dedi-
cated tooling. This capability holds transformative potential 
for industries like aerospace and automotive by enabling the 
creation of highly customized parts tailored to specific appli-
cations. However, the presence of internal features within 
these components poses challenges to traditional quality 
control methods, as they are often inaccessible to vision-
based or tactile inspection techniques. While destructive 
testing methods can provide measurements of internal char-
acteristics, they often compromise the very features being 
assessed during the disassembly process.

To address this, X-ray based inspection has emerged 
as a powerful, non-destructive alternative for examin-
ing the internal structures of AM components. This tech-
nique can provide critical insights into various aspects of 
structural integrity, including tolerance limits, residual 
stresses, dimensional deviations, and internal defects such 
as cracks or voids that could compromise the performance 
of AM components and introduce risks of failure. Given 
that comprehensive literature reviews on the application 
of X-ray technologies for the inspection of AM parts and 
processes are readily available in existing literature (e.g., 
see [1–5]), this section specifically focuses on elucidating 
the primary conceptual distinctions between XCT and 3D 
XRM. A preliminary version of this paper was presented 
in recent conference proceedings [6]. Most industrial XCT 
systems employ a high-energy X-ray source paired with a 
flat panel detector to capture projection images of an object 
as it undergoes rotation on a precision-engineered turntable. 

This setup is designed to optimize the imaging process by 
ensuring that high-quality radiographs are obtained from 
multiple angles. During a complete 360º rotation, or alterna-
tively a 180º rotation combined with the fan or cone angle of 
the X-ray beam, a series of projection images are acquired. 
These images are subsequently processed using advanced 
reconstruction algorithms, such as filtered back-projection 
or iterative reconstruction techniques, which convert the 
stack of two-dimensional (2D) radiographic data into a 
comprehensive three-dimensional (3D) representation of 
the object. The resulting 3D image is composed of volumet-
ric elements known as voxels, each assigned a specific grey 
level that corresponds to the density and material composi-
tion of the object’s internal and external features. This voxel-
based representation provides a detailed volumetric map of 
the object’s components, facilitating the identification and 
analysis of structural characteristics. Advanced image pro-
cessing techniques further enable the segmentation of spe-
cific features within the dataset, while false-color mapping 
can highlight different materials or density ranges [7]. This 
enhances both qualitative assessments, such as identifying 
defects, and quantitative analyses, such as measuring poros-
ity. These capabilities contribute to a deeper understanding 
of the object’s integrity and performance. An illustration of 
the XCT data process is provided in Fig. 1. 

Traditional flat-panel XCT systems primarily rely on 
basic geometric magnification principles, which are inher-
ently dependent on the sample size as well as the relative 
distances between the X-ray source, the sample, and the 
detector. However, this reliance on geometric magnification 
can impose significant limitations on the size of samples 
that can be effectively scanned, particularly when analyzing 
small features within AM components. Micro-geometries 

Fig. 1   XCT measurement workflow: A systematic approach outlining the sequential steps involved in capturing radiographic projections for three-
dimensional (3D) XCT image reconstruction. After determining the object's surface, a detailed inspection of its geometric dimensions is conducted 
using a probing and sampling strategy applied to the 3D XCT data. Adapted from [8]
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are the most critical, as the most challenging features to 
analyze are those with dimensions comparable to the voxel 
size. As the sample size increases, geometric magnification 
decreases, resulting in a corresponding reduction in image 
resolution. This limitation poses a significant challenge 
for researchers and engineers who require high-resolution 
imaging to accurately assess the integrity and characteristics 
of complex geometries commonly found in AM parts.

To address these limitations, 3D XRM systems have been 
developed. These advanced systems integrate both geomet-
ric and optical magnification techniques, along with a key 
feature known as ‘resolution-at-a-distance (RaaD)’ [9–11]. 
In the context of XCT, the reduction in geometric magni-
fication when scanning larger samples typically leads to a 
decline in spatial resolution. However, the incorporation 
of optical magnification in XRM systems mitigates this 
issue by maintaining or even enhancing spatial resolution, 
thereby providing a more detailed view of the sample’s 
internal structures. The integration of RaaD capabilities into 
the design of XRM systems allows for significant improve-
ments in imaging quality without imposing strict restrictions 
on the size of the samples being analyzed. This advance-
ment enables researchers to investigate larger components 
while still capturing fine details, broadening the applicabil-
ity of XCT across various fields, including materials science 
and engineering. An illustration of the XRM data acquisi-
tion workflow is provided in Fig. 2. 

2  Assessing AM Processes Parameters and 
Quality Using XCT and Deep Learning

The integration of DL techniques into XCT for industrial 
applications has led to significant advancements in image 
reconstruction, segmentation, and feature characterization, 
as highlighted in a recent review [12]. This review outlines 
key challenges in XCT inspections, such as time constraints 
and image artifacts, and emphasizes the need for greater 
automation in data processing. It identifies well-developed 
machine learning and DL methods in segmentation and fea-
ture extraction, while calling for future research to focus on 
techniques that enhance raw measurement data and reduce 
the reliance on labelled datasets. Additionally, it advocates 
for incorporating uncertainty quantification and explainable 
artificial intelligence to improve the robustness and adop-
tion of these technologies in non-destructive testing and 
metrology.

A common challenge in applying DL techniques to XCT 
is the lack of pre-existing training data. Many DL methods 
required models to be pre-trained on labeled datasets, but 
the complexity and diversity of XCT data make training a 
generalized model difficult. A more effective approach is to 
train the model directly on the specific XCT data that the 
user is trying to reconstruct. This approach offers the sig-
nificant advantage of enabling model training to improve 
scan quality using automatically captured reference scans, 
thereby removing the need for human-annotated data in 

Fig. 2  XRM measurement workflow: Integration of geometric and optical magnification to enhance the spatial resolution capabilities of 3D XCT 
image reconstruction. The bottom row displays combined data for reconstructing an AM lattice from two distinct scans: a full field-of-view scan 
at 8 µm per voxel and an interior tomography scan obtained at 3.5 µm per voxel
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Additionally, the combination of real and synthetic data has 
been used in prior studies [16] to address challenges such 
as scattering artifacts. The result is a substantial reduction 
in scanning time, cost, and labor, while improving defect 
detectability and maintaining high image quality.

Simurgh exemplifies the potential for future research 
to address key gaps identified in the literature, particularly 
in enhancing raw measurement data and automating the 
inspection process. This framework demonstrates how DL 
can significantly enhance XCT workflows, making them 
faster, more efficient, and more accessible for industrial 
applications. Simurgh has been applied across a range of 
materials for high-throughput inspection and characteriza-
tion of dense AM metal parts, facilitating process param-
eter optimization for challenging materials such as AlCe, 
316 L/H, and Inconel 718 [13, 14, 20–22]. While its primary 
focus has been on accelerating scan times for dense metallic 
parts and reducing artifacts such as noise, beam hardening, 
streaks, and scattering, the method is sufficiently adaptable 
to be extended to other material classes, such as polymers, 
provided it is trained on appropriate materials and scans.

Example results for AlCe and Inconel 718 alloys are pre-
sented in Fig. 3(a) and Fig. 3(b), respectively. In Fig. 3(a), 
an AlCe alloy sample was scanned using a ZEISS Metrotom 
800 system. A typical scan duration of 39 min was reduced 
to 13 min using Simurgh, representing a 3x speed improve-
ment [13, 14]. A representative reconstruction slice is 
shown alongside high-resolution microscopy, which 

applying DL for anomaly detection in XCT. Additionally, 
it can drastically reduce scanning time—by minimizing 
the required number of projections and exposure dura-
tion—while simultaneously enhancing the quality of XCT 
reconstructions.

One notable implementation of this strategy is Simurgh, 
a DL-based XCT reconstruction framework designed to 
overcome the limitations of traditional analytical and itera-
tive methods [13–15]. Simurgh employs a combination of 
real XCT scans and physics-informed synthesis for training 
[14, 16]. In the case of real scans, dense XCT scans of actual 
components are used, incorporating physics-based beam 
hardening corrections and model-based iterative reconstruc-
tion (MBIR) techniques [13, 17] to generate high-quality 
training datasets. These dense datasets are then subsampled 
to create low-quality input data, forming low-high quality 
pairs. By augmenting these pairs, Simurgh trains a robust 
supervised 2.5D convolutional neural network (CNN) 
capable of producing high-quality reconstructions during 
inference, even for scans performed at significantly reduced 
durations.

Alternatively, Simurgh leverages synthetic data by com-
bining defect libraries from previous XCT scans, CAD 
models of parts, and physics-informed simulators (e.g. the 
ASTRA toolbox [18]) with generative adversarial networks 
(GANs) [14, 19]. This approach generates realistic train-
ing data pairs to train the 2.5D CNN for high-resolution 
3D reconstructions from sparse or short-duration scans. 

Fig. 3  An example of Simurgh's performance on in-distribution data (test data from materials and scans similar to those used during training). 
Comparison with high-resolution optical microscopy was employed to calculate the true positive rate (flaw detection probability) [13]. (a) For 
Aluminum Cerium (AlCe) alloy (density ~3.4 g/cm³); (b) For the very dense Inconel 718 alloy (density ~8.5 g/cm³)
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Supervised deep learning models, such as Simurgh, typi-
cally require the test data to closely match the training data 
in terms of material properties, scanner type, resolution, 
and scan settings. This study evaluates Simurgh’s ability to 
generalize beyond its original training data distribution. To 
test this, a new Simurgh model was trained using data from 
four materials —AFA, 718, Ti64, and AlSiMg—scanned on 
the ZEISS Metrotom 800 at a voxel resolution of 17.3 μm. 
High-fidelity scans reconstructed using the BHCN-MBIR 
method [17] were used as ground truth data. Correspond-
ing sparse-view reconstructions, generated using the FDK 
algorithm with 145–250 projection views, were created to 
train the model on low-to-high quality volume pairs. This 
training approach enabled the model to enhance sparse-
view reconstructions, producing high-quality results even 
with limited projection data.

The trained Simurgh model was then applied to samples 
made of Aheadd CP1 (AA8A61.50), a novel aluminum alloy 
developed by Constellium for the high solidification rates 
of laser powder bed fusion AM [27]. These samples were 
scanned using the ZEISS Metrotom 1500 system under the 
following conditions: 800 projection views, 1-second inte-
gration time, 2x binning, no image averaging, and a voxel 
size of 16.1 μm. The Metrotom 1500, equipped with a larger 
detector (139 × 139  μm² pixels), was operated at different 
voltages and currents, resulting in varying spot sizes and 
signal characteristics. To evaluate Simurgh’s performance 
on this out-of-distribution (OOD) dataset, the reconstruc-
tions were compared against synchrotron XCT data acquired 
at a 5 μm resolution. Although the synchrotron reconstruc-
tions presented their own challenges, such as paste residue 
artifacts, they provided high contrast around pores, mak-
ing them suitable ground truth references. For additional 
comparison, industry-standard FDK reconstructions were 
also included as a baseline for comparison. All datasets—
FDK, Simurgh, and synchrotron—were segmented using a 
deep learning-based flaw segmentation model. Segmenta-
tions were registered to the synchrotron data using fiducial 
landmarks and iterative closest point (ICP) alignment [29]. 
Despite registration challenges due to paste artifacts, the 
alignment was sufficient to evaluate segmentation accuracy. 
Defect detection performance was quantified using preci-
sion, recall, and F1-score metrics. The F1-score, defined as 

F1 = 2T P
2T P +F P +F N , balances the trade-off between true 

positives (TP), false positives (FP), and false negatives 
(FN). Figure 4 highlights Simurgh’s superior reconstruction 
quality (Fig. 4(b)) compared to synchrotron data (Fig. 4(a)), 
with F1-scores plotted against flaw diameter (Fig.  4(c)) 
showing that Simurgh significantly outperforms the stan-
dard FDK, even on OOD data.

verifies that Simurgh achieves a true positive rate exceed-
ing 90% for detecting flaws larger than 50  μm. Scanning 
Inconel alloys poses an even greater challenge due to their 
high density. Conventional methods often require over two 
hours to scan a 15 mm sample, but Simurgh enabled high-
quality reconstruction from a 10-minute scan (Fig.  3(b)), 
achieving comparable detection accuracy [21, 22]. This is 
particularly significant for dense materials, where scattered 
radiation typically reduces contrast and limits the identifica-
tion of small defects. Scattering artifacts distort local gray 
values, making reliable identification of small defects more 
difficult. Simurgh effectively addresses these challenges, 
enabling faster and more accurate defect detection in dense 
materials. 

The effectiveness of the Simurgh framework is dem-
onstrated through a comparison of defects identified in its 
reconstructions with those observed in optical micrographs, 
which serve as the ground truth. A strong overlap between 
pores visible in the XCT data and the micrographs confirms 
Simurgh’s ability to produce high-quality representations. In 
the examples shown in Fig. 3, samples were sectioned, and 
optical microscopy was performed at a resolution of 1 μm. 
Flaws such as pores and cracks were segmented in both the 
XCT and microscopy datasets, which were registered using 
the procedure outlined in Ref [13]. The True Positive Rate 
(TPR)—the ratio of flaws detected in both XCT and opti-
cal microscopy—was calculated using the registered datas-
ets. Results show that Simurgh significantly improves flaw 
detection, even for scans performed at much faster rates 
than conventional methods.

For instance, scanning a 15 mm AlCe sample typically 
takes 40 min to 1 h, while dense materials like Inconel 718 
require over 2  h to achieve high-quality scans capable of 
detecting small flaws. These extended durations are primar-
ily attributed to the material’s density and the need to meet 
the Nyquist criterion, which often demands nearly the same 
number of projection views during a scan as the number 
of detector columns to ensure high-quality reconstruction 
when employing the standard analytical Feldkamp-Davis-
Kress (FDK) algorithm [23]. For instance, approximately 
2000 projection views are required for standard recon-
structions involving around 2000 detector columns [24, 
25]. Simurgh overcomes these limitations, enabling faster 
scans without compromising detection accuracy. Addition-
ally, Simurgh’s high-quality reconstructions simplify post-
processing, significantly reducing the total inspection effort. 
This capability supports the use of XCT as a tool for process 
parameter optimization, where hundreds of samples—each 
printed with different parameters—can be scanned rapidly 
and analyzed for flaw density and geometric accuracy [14, 
20–22, 26].
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require retraining. Similarly, while the model performs well 
on resolutions near its training voxel size, substantial devia-
tions may necessitate new models optimized for different 
resolution domains. Addressing these challenges to enhance 
Simurgh’s generalizability and robustness beyond its cur-
rent operating envelope remains a focus of ongoing and 
future research [16, 33, 34].

XCT can be effectively used to rapidly evaluate the out-
comes of hundreds of AM print parameters, such as laser 
power, velocity, hatch spacing, and gas flowrate, to optimize 
settings for specific material and machine combination (e.g., 
see Fig. 5). The workflow for analyzing printing parameters 
begins with the fabrication of test coupons, as shown in 
Fig.  5(a). These cupons can either be built using uniform 
parameters or designed with a parameter grid. Once the 
coupons are removed from the build plate, XCT scanning 
is performed automatically, followed by the subsequent 

Simurgh’s ability to produce high-quality reconstruc-
tions from accelerated scans, facilitates process parameter 
optimization for novel metal AM materials. For example, it 
was used to identify optimal AM process parameter for CP1 
using 90 μm layers on a 700 W SLM280 printer [30]. Addi-
tionally, a high-throughput AM print quality assessment 
system based on C-scan ultrasonics has shown promising 
results on CP1, complementing Simurgh XCT’s capabilities 
[31, 32]. Simurgh’s strong performance on OOD datasets 
is attributed to its training on diverse materials, varied scan 
settings, and extensive data augmentation. However, as a 
supervised learning framework, its performance is inher-
ently limited by its training domain. Significant deviations, 
such as more complex or denser geometries, different scan 
parameters (e.g., integration time or number of projection 
views), or the presence of anomalous inclusions and sec-
ondary materials, may degrade reconstruction quality and 

Fig. 5  (a) AlCe AM build plate filled with testing coupons; (b) process parameter mapping based on XCT data for developing a new AlCe AM 
alloy (Adapted from Ref. [13]). Deep learning (DL)-based algorithms enabled sparse XCT scanning and facilitated automated reconstruction and 
segmentation of porosity flaws.

 

Fig. 4   Performance of the Simurgh Model on OOD data, compared with synchrotron data. (a) Slice through the 3D synchrotron volume; (b) 
Simurgh deep learning (DL) reconstruction of the volume; (c) F1-score comparison between Simurgh results and standard reconstruction for a 
fast sparse scan
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efficient methodology for AM parameter optimization. This 
approach accelerates evaluation, reduces labor and opera-
tional costs, and serves as a valuable tool for advancing AM 
technologies.

The Design-of-Experiment (DOE) analysis for an AlCe 
alloy, shown in Fig. 5(b), illustrates how the porosity levels 
vary with changes in energy density during processing. This 
enables the experiment designers to identify optimal pro-
cessing conditions for new alloys. Beyond determining AM 
process parameters, the workflow described in Ref [13] can 
also assess the repeatability of an AM process by analyzing 
coupons produced across different builds or machines. Indi-
vidual test coupons (small stubs visible in Fig. 5(a)) can be 
further inspected to verify scan quality and analyzethe types 
of porosity formed during manufacturing.

Figure 6(a) presents a 2D slice from the 3D volume 
dataet of a test coupon scanned in the fast parameter analysis 
workflow. This workflow effectively detects layer defects, 
lack of fusion, keyhole pores, cracks, and surface charac-
teristics. After confirming the scan and segmentation qual-
ity, test parts were produced using the optimized parameters 
identified in the workflow. Figure 6(b) shows a transverse 
slice of a printed part containing a layer defect formed dur-
ing processing. Such defects render the part unsuitable for 
further testing and development.

Layer defects typically arise when the powder spread-
ing step encounters a raised region, leading to sparse pow-
der distribution in specific areas of the part. Although these 
defects are not visible on the surface, they significantly 
compromise the part’s performance. Layer defects may 
occur in isolated locations or intermittently throughout the 
built, as shown in Fig. 6(c-d), with each defect acting as a 
potential failure initiation site. When defects appear at regu-
lar intervals, this could indicate a powder shortage from the 
spreader, warranting an investigation into the 3D printers 
recoating mechanism.

The DOE workflow not only aids in optimizing AM 
process parameters but also provides critical insights into 
defect formation and process repeatability. By identifying 
and addressing issues such as layer defects, the workflow 
ensures higher part quality and performance, making it an 
invaluable tool for advancing AM technologies.

3  Characterization of AM Components with 
XCT and 3D XRM

3D XRM is instrumental in analyzing AM powders, enabling 
detailed characterization of particle size, shape, and inclu-
sions. High-resolution scans are especially crucial for fine 
powders used in processes such as Powder Bed Fusion 
(PBF) and Binder Jetting, as these powders are prone to 

analysis. By leveraging DL-based methods [13], this pro-
cess has been accelerated dramatically, reducing the evalu-
ation time for a metal AM test plate from up to six weeks 
(using 2D light microscopy) to just one or two days.

DL-based methods achieve this acceleration by enabling 
shorter XCT scan times and requiring significantly fewer 
projections—down to as low as 1/10th of the total projec-
tions typically needed in traditional methods, which often 
require over a thousand projections per scan. These methods 
also reduce image noise and XCT artifacts, enhancing the 
accuracy of defect alignment and segmentation in subse-
quent analysis steps. This efficiency is critical, as large sam-
ple volumes must be scanned to derive meaningful insights 
into AM processes. Reducing the number of projections for 
XCT data reconstruction directly decreases measurement 
acquisition times and, consequently, the cost of the measur-
ing process [24]. For dense materials like Inconel, scans that 
traditionally required 1800–2000 projection views can now 
be performed with only 145–200 projection views, thanks to 
DL-enhanced reconstruction techniques.

Theoretical limits on the minimum number of projec-
tion views for accurate CT reconstruction are derived from 
the Nyquist-Shannon sampling theorem [25]. By pushing 
these limits, DL-based methods enable faster scans without 
compromising reconstruction quality. The speeds achieved 
in this workflow suggest that replacing samples during a 
series of XCT scans could become the bottleneck in the 
process. This limitation can be addressed by integrating an 
autoloader or automated sample changer, ensuring seamless 
workflow continuity.

Beyond scan times, the consistency of DL-based recon-
structions significantly reduces post-processing efforts. 
Traditional FDK-based reconstructions often suffer from 
inconsistencies and artifacts, requiring manual tuning of 
segmentation parameters for each sample. This manual 
effort wastes time and labor. In contrast, Simurgh’s high-
quality and consistent reconstructions allow the use of a 
single segmentation model with fixed parameters across 
all samples. This consistency enables fully automated post-
processing and analysis, saving substantial time and facili-
tating high-throughput process parameter optimization.

From a computational perspective, the use of graphics 
processing units (GPUs) ensures rapid inference times, typi-
cally ranging from 1 to 10 min depending on sample size 
and GPU availability. Even for longer Simurgh's inference 
times, the workflow remains efficient by running reconstruc-
tions concurrently with the scanning of the next batch of 
samples. This parallelized approach ensures uninterrupted 
high-throughput parameter optimization.

In summary, the combination of reduced scan times, 
automated workflows, consistent reconstructions, and opti-
mized computational processes provides a scalable and 
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relationship to functional printing conditions, is critical for 
determining the limits of powder recycling and ensuring 
optimal performance.

In contrast, Inconel powders appear as consistently 
spherical grains that are nearly identical in size, and rela-
tively small compared to aluminum grains. However, some 
Inconel grains still exhibit micro-porosity structures. The 
presence of these channels or microstructures in the powder 

internal voids and inclusions that can compromise the qual-
ity and mechanical properties of the final parts.

For example, Fig. 7 illustrates that most aluminum pow-
der grains are non-spherical, vary in size, and exhibit irreg-
ular morphologies. These characteristics negatively affect 
the powder’s spreadability and flowability, which, in turn, 
can compromise print quality. Characterizing the spheric-
ity and size of powder grains, as well as understanding the 

Fig. 7  (a) A composite XCT image of two distinct raw AM powders (adapted from [40]), illustrating the size and shape distribution of powder 
grains, the presence of satellite particles, and internal porosity within individual grains. (b) Volumetric reconstruction of Ti6Al4V AM feedstock 
powder scanned with a 3D XRM (ZEISS Xradia 620 Versa), highlighting the size and shape distribution of the powder grains

 

Fig. 6  (a) XCT slice of an AlCe AM test coupon revealing large pores ready for segmentation and comparison with other parts in the build. (b) XY 
slice of a part showing a large layer defect from a top-down view found during part inspection. (c) Layer defects viewed from a slice transverse to 
the build direction with (d) an inset box showing a higher magnification of the region of interest
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and optical magnification with RaaD. For example, Fig. 9 
demonstrates how RaaD enables multiscale characteriza-
tion of an AM steel lattice sample. Smaller features, such as 
trapped powder particles, are clearly visualized with high-
resolution XRM scans. An overview tomography scan was 
first collected using a 0.4X magnification objective (nomi-
nal voxel size: 10  μm), followed by a higher-resolution 
scan with a 4X magnifying objective (nominal voxel size: 
4.5 μm). While the powder was visible in the low-resolution 
scan, segmentation was only possible in the higher-resolu-
tion scan, which used a straightforward intensity threshold-
ing method. Unlike traditional inspection methods requiring 
physical sectioning, 3D XRM provides a non-destructive, 
comprehensive view of both external and internal geom-
etries, enhancing defect detection and analysis.

By performing scans at different resolutions, researchers 
and engineers can reconstruct a detailed multiscale image 
reconstruction of a part, capturing both macro-structures 
and micro-defects. High-resolution scans reveal small-scale 
defects, while lower-resolution scans capture the overall 
geometry. The resulting 3D model enables defect identifica-
tion without physical sectioning, providing a more efficient 
and complete evaluation of AM components.

Understanding the relationship between defects, mate-
rial properties, and input process parameters is critical for 
determining whether an AM component should pass or 
fail quality assessments. Defects such as porosity, inclu-
sions, trapped powder, and surface irregularities can sig-
nificantly degrade mechanical performance, particularly 

material could influence the porosity percentage of a fin-
ished AM part made from such material or induce fractures 
and cracks due to the lack of fusion voids, as illustrated in 
Fig. 8. Such defects can significantly compromise the struc-
tural integrity and reliability of the printed components.

Beyond porosity, other critical attributes of AM powders 
require thorough evaluation to ensure process reliability and 
part quality. These include particle size distribution, mor-
phology, heterogeneity, geometry, and grain microstructure 
[35–39]. Metal AM powders generally range in size from 
15 μm to 150 μm [35]. Certain anomalies within the pow-
der can induce defects in the final AM parts. For instance, 
powders with a uniform size distribution promote homoge-
neous melting and facilitate strong interlayer bonding [37]. 
Conversely, irregularly shaped particles or grain agglomer-
ates can lead to porosity in the final component, particularly 
in laser or electron beam melting processes. These anoma-
lies also affect flowability and packing density, negatively 
impacting print quality. High-resolution 3D XRM scans 
can identify these anomalies, enabling powder optimiza-
tion before the AM process begins. This ensures that the 
powders used are of the highest quality, minimizing the risk 
of defects and enhancing the overall reliability and perfor-
mance of AM components.

As mentioned in Sect. 1, traditional XCT systems using 
simple geometric magnification have limited spatial reso-
lution for visualizing small features within AM parts, and 
resolution deteriorates as sample size increases. This lim-
itation can be overcome with 3D XRMs using geometric 

Fig. 8  Crack formation due to interconnected porosity within an AM aluminum part, scanned with a 3D XRM (ZEISS Xradia 620 Versa) 
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an internal contaminant in an Inconel-738 turbine blade. 
High-density contaminants often result from improper pow-
der handling, inadequate machine cleaning between build 
cycles, or substandard raw materials. Such contamination 
can be identified by inspecting incoming AM powder at var-
ious stages of the build process, as illustrated in Fig. 10(d). 
Defects like inclusions and porosity can reduce mechanical 
properties, particularly fatigue resistance in turbine blades. 
Additionally, understanding powder microstructure—such 
as grain size and shape —is crucial for predicting and 
controlling the mechanical properties of the final product. 
High-resolution 3D XRM offers a non-destructive method 
to analyze these features, providing valuable insights for 

under cyclic loading conditions where fatigue properties 
are critical. A thorough analysis of these defects and their 
influence on material behavior is imperative. Establishing 
a robust baseline for determining acceptable defect thresh-
olds may require additional testing and advanced analytical 
techniques, such as high-resolution 3D XRM imaging to 
detect and quantify defects, followed by mechanical test-
ing to assess their impact on performance. Computational 
modeling and advanced statistical methods can further aid 
in predicting the effects of defects on the structural integrity 
of AM components.

Foreign materials in printed components can act as crack 
initiation sites or exacerbate internal defects. For example, 
Fig. 10(a-c) show cracks and non-fusion defects surrounding 

Fig. 10  (a) 3D rendering of XCT reconstruction of an Inconel-738 AM turbine blade. (b) Detailed views showing cracks (top) and lack-of-fusion 
defects (bottom). (c) Zoomed-in XRM data highlighting a high-density unfused powder particle. (d) XRM scan revealing high-density particle 
contamination in the AM powder

 

Fig. 9  Multiscale characterization of an AM steel lattice featuring agglomerated powder (unmelted particles) trapped within. Regions of interest 
in the lattice were scanned using various zoom lenses with a 3D XRM equipped with RaaD capabilities (ZEISS VersaXRM 730). (a) Overview 
tomography of the lattice obtained with a 0.4X zoom lens. (b) Interior tomography of the lattice captured with a 4X zoom lens, revealing trapped 
powder within the lattice interior. (c) Segmentation and isolation of the trapped powder. Coloration of the powder particles is for illustrative pur-
poses only
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significantly influences roughness measurements, with dis-
tinct effects observed for Polyjet and selective laser sinter-
ing (SLS) technologies. Linear roughness parameters were 
deemed appropriate for fused deposition modeling (FDM) 
and Polyjet surfaces, while SLS surfaces require areal char-
acterization for accurate assessment. Additionally, XCT-
based surface roughness measurements are sensitive to 
surrounding material thickness [47], as identical surfaces 
yield varying roughness parameters under different condi-
tions. This highlights the importance of considering mate-
rial density and artifacts during measurement.

Advanced methodologies integrating XCT with 3D 
roughness characterization of metal AM channel surfaces 
have enabled non-destructive analysis of internal AM 
surfaces [48], facilitating detailed roughness distribution 
studies. For instance, XCT was employed to compare con-
ventional heating coils with AM counterparts, revealing that 
brazed defects common in traditional coils are mitigated 
through AM. Figure  11 illustrates a 2D slice of the XZ-
plane, showing a cross-section of the coil and one of the 
pipes, enabling a direct comparison of the internal structures 
and defects. Conventional coils exhibit cracks and pores in 
brazed regions, leading to inconsistent lifecycles, while 
AM coils produced via laser PBF show improved structural 
integrity. However, laser PBF surface roughness is influ-
enced by factors such as thermal transfer, particle adhesion, 
spatter, and layer thickness. Notably, AM parts may exhibit 
design-related limitations, such as step changes in wall 
thickness or wavy surfaces from support structures, which 
require further optimization.

Build orientation in PBF significantly impacts surface 
quality. Down-facing surfaces often require support struc-
tures and post-processing, but internal down-facing sur-
faces, such as those inside tubes, cannot be mechanically 
cleaned or visually inspected. To address this, the RaaD 
capabilities of a 3D XRM (ZEISS Xradia 620 Versa X-ray 
microscope) were used to “zoom in” on the internal regions 
of interest and enable high-resolution scans of internal sur-
faces without sample preparation. Figure  12(a) shows a 
heating coil in the microscope, where an overview scan is 
first performed using a 0.4X objective. The overview identi-
fies the transition between upskin and downskin (overhang-
ing surface), and the region of interest is selected (green 
circle in Fig.  12(b)). The coordinates are then transferred 
to the 3D microscope for a RaaD scan, which is overlaid 
on the overview scan in Fig. 12(b) and displayed in 3D in 
Fig. 12(c). RaaD offers the unique advantage of performing 
high-resolution scans on intact samples without requiring 
sample preparation or size reduction, unlike conventional 
geometric magnification-based XCT scanning approaches. 
The conventional heat coil pipe was scanned similarly, 
and its 3D volume is shown in Fig. 12(d). Testing surface 

optimizing powder selection and processing of specific AM 
applications.

More broadly, testing and qualifying AM processes is 
fundamental for understanding how defects affect structural 
performance and the quality of both raw materials and fin-
ished products [41–44]. For instance, XCT data has proven 
effective in studying the transfer of properties and charac-
teristics from a “witness coupon” to a component. A tur-
bine blade and an AM cylindrical rod, acting as a witness 
coupon, are often manufactured simultaneously from the 
same material to enable direct property comparisons. Initial 
studies [5, 44] suggest that non-fracture-critical properties 
are less sensitive to defect distribution than fatigue proper-
ties, underscoring the importance of defect characterization 
in fatigue-critical applications.

XCT has proven effective in detecting defective blades, 
enabling the successful production of crack-free Inconel-738 
turbine blades via PBF. These blades were machined to toler-
ance and hot-fired during an engine performance validation 
trial [45]. This study involved scanning and inspecting over 
100 test turbine blades for cracks. By combining high-reso-
lution XCT imaging of raw feedstock with high-throughput 
XCT imaging of finished components, a comprehensive 
characterization strategy for detecting cracks and inclusions 
was established. This extensive dataset, comprising both 
defective and non-defective samples, proved valuable for 
training DL models and validating artifact and noise reduc-
tion techniques. Such approaches enable faster scanning 
times while improving defect detection confidence, paving 
the way for more efficient and reliable AM workflows.

4  Evaluation of Internal Surface Quality in 
AM Parts

PBF has proven effective in producing near-net-shape parts, 
consolidating multiple traditionally joined components into 
a single AM part. This consolidation simplifies assembly, 
enhances design flexibility, and minimizes overall material 
waste. However, variations in surface quality across differ-
ent AM processes may require surface finish modifications 
to meet performance requirements. Surface improvements 
can be achieved through optimized contour parameters dur-
ing printing or post-processing techniques, which enhance 
both mechanical properties and aesthetic quality to meet 
application-specific standards.

The layer-based nature of AM introduces surface rough-
ness, which has been studied using traditional XCT, par-
ticularly for large-scale polymer parts [46]. Factors such 
as inclination angles and layer thickness were varied to 
produce ramps with different theoretical average rough-
ness (Ra) values. The study revealed that post-processing 
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the background or surrounding air. A suitable surface path 
from the region of interest was selected, and the geometry-
related curvature was removed by fitting and subtracting a 
polynomial of appropriate order. A 1D line profile was then 
extracted to calculate the Ra values, as shown in Fig. 12(e-
g). A decreasing trend in roughness was observed, moving 
from overhanging surfaces to upskin and finally to the con-
ventional copper pipe. Beyond Ra, other surface features, 
such as reentrant features are critical for classifying internal 

locations were generated from voxel datasets (gray scales 
or absorption intensities) obtained through XRM scanning, 
using local adaptive or dynamic gradient threshold methods 
[49, 50].

From the contrast in 3D volumes, the surface was 
polygonized with sub-pixel resolution, or sub-voxel inter-
polation. This involved identifying lines (surfaces in 3D) 
along the highest brightness gradient in the voxel data, dis-
tinguishing the edges between the component’s material and 

Fig. 12  Workflow for inspecting internal surfaces using 3D X-ray microscopy: (a) Part placement, (b) View perpendicular to the longitudinal axis, 
(c) AM 3D surface, (d) Conventional 3D surface, (e) AM downskin, (f) AM upskin, and (g) Conventional pipe surface

 

Fig. 11  XCT inspection of induction hardening coils: (left) conventionally produced and (right) additively manufactured
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coupled with high-magnification objectives (such as the 
40X-Prime objective for ZEISS XRMs), enable the exten-
sion of the X-ray tube’s voltage range up to 160 kV, achiev-
ing resolutions as fine as 0.4 μm/voxel. This improvement is 
attributed to reduced point spread and enhanced sensitivity 
at higher voltage levels.

Despite these hardware developments, mapping sub-
micron voids in larger samples remains challenging due 
to relatively low signal-to-noise ratios. This study demon-
strates a multiscale 3D imaging approach on a 3D-printed 
Inconel 718 alloy lattice (Fig.  13). The method combines 
low-resolution full-field-of-view (FFOV) scans with high-
resolution scans of specific interior volumes. High-resolu-
tion datasets were reconstructed using ZEISS DeepRecon 
Pro [10, 51], a DL-based 3D reconstruction method that 
effectively reduces noise and improves image quality. The 
low-resolution FFOV dataset was then upscaled using 
DeepScout, a DL-based workflow recently integrated into 
3D XRM workflows by ZEISS [52, 53]. While DeepRe-
con introduces convolutional neural networks trained to 
generate 3D reconstructed volumes with improved image 
quality through edge-preserving noise reduction, Deep-
Scout focuses on enhancing the 3D XRM spatial resolution 
of large-volume datasets without compromising the FOV. 
By training a deep convolutional neural network on pairs 
of low- and high-resolution images of the same sample, 
DeepScout derives a spatially varying effective point spread 
function, enabling the upscaling of low-resolution scans 
into high-resolution images.

DeepScout addresses the traditional resolution-volume 
trade-off, enabling detailed defect detection and microstruc-
tural analysis in various materials, such as those used in AM. 
It also mitigates imaging challenges such as system instabil-
ity and detector blurring by incorporating spatial priors and 
high-order voxel-based image registration. This results in 
improved resolution, noise reduction, and minimized arti-
facts, facilitating faster acquisition of high-resolution data-
sets in 3D XRM [54, 55]. By reducing background noise 
and enhancing image contrast, as illustrated in Fig.  14, 
DeepScout significantly improves the clarity and detail of 
the reconstructed images while preserving finer morpho-
logical details of voids and unsintered powder. Additionally, 
higher-resolution XRM scans processed with DeepRecon 
algorithms enable the clear visualization of cracks, small 
voids, and satellite particles.

Reconstructions from low-resolution (LR) scans, col-
lected at 8 μm/voxel (Fig. 14), served as input for the DL-
based noise reduction and resolution recovery processes. 
High-resolution (HR) scans, acquired at 3.5  μm/voxel, 
revealed small pores that were difficult to detect in LR scans. 
These HR scans were used to train the resolution recovery 
DL model, which generated the upscaled dataset at 3.5 μm/

surfaces. As complete surface analysis is possible using the 
XRM data, as shown in Table 1. For instance, consider Rz, 
which assesses extreme surface height variations, while 
Rmax is important for applications where the highest peak 
or deepest valley could affect wear resistance or fatigue life.

Comparative analysis reveals higher surface variation in 
3D-printed parts compared to conventional ones. Whether 
this variation is acceptable depends on the part’s applica-
tion. Internal surfaces can potentially be improved through 
abrasive etching processes, making non-destructive charac-
terization methods like XCT essential for evaluating etching 
effectiveness.

5  Multiscale Porosity Analysis Using Deep 
Learning and Other Tools

As demonstrated through several examples throughout this 
paper, porosity is a challenging aspect of additive manu-
facturing that significantly influences the mechanical and 
thermal performance of an AM part. Achieving tight control 
over the porosity demands a comprehensive understanding 
of its distribution, morphology, and sources of origin, which 
often span multiple length scales, i.e., nm to mm. Detecting 
porosity across a broad size range in a large representative 
sample volume is difficult due to the resolution vs. field-of-
view (FOV) trade-off. Large FOVs typically reduce imag-
ing resolution, while higher resolution limits the sample 
volume that can be scanned. In XCT, this challenge is fur-
ther compounded by X-ray penetration depth limitations in 
larger samples, which affects the resolution, signal-to-noise, 
and image quality.

Recent advances in X-ray imaging hardware and DL-
based reconstruction methods, such as ZEISS Advanced 
Reconstruction Toolbox 4.0, offer innovative solutions to 
these challenges. Improvements in X-ray scintillator tech-
nology now enable imaging of denser materials at higher 
resolutions and X-ray energies. For instance, earlier scintil-
lator-based objectives were limited to 100 kV and 0.7 μm/
voxel resolution, restricting high-resolution imaging to small 
sample sizes (e.g., 1–2 mm of steel). The latest scintillators, 

Table 1  Characterization of XCT full-profile parameters for internal 
surfaces derived from the XRM data presented in Fig. 12, in accor-
dance with the ASME B46.1 standard. Roughness parameters (S-L): 
F: none, S-filter (λs): gaussian, 2.500 μm (1 cut-off), and L-filter (λc): 
gaussian, 8.000 μm (1 cut-off).
Profile parameters AM dowskin AM upskin Conventional
Ra (µm) 24.77 7.229 3.028
Rz (µm) 252.3 66.24 29.79
Rmax (µm) 284.7 70.58 34.78
Rq (µm) 34.46 9.232 3.838
Rsk 0.3306 0.03025 0.4531
Rku 5.618 3.394 3.946
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effectively. By incorporating DeepRecon into its processing 
pipeline, DeepScout inherently reduces noise. In high-noise 
regions, such as lattice nodes, detecting small pores is par-
ticularly challenging due to interference from neighboring 
noisy pixels. However, the combination of noise reduction 
and resolution recovery enables better definition of these 
voids. Challenges in segmenting and quantifying air-con-
nected voids can potentially be addressed using advanced 
techniques like 3D watershed methods combined with mask 
subtraction.

Once trained, the DS model can upscale larger sample 
volumes efficiently, as illustrated in Fig.  15(a-c). These 
3D-rendered views compare conventional and DL-based 
reconstructions. Void segmentation and visualization were 
performed using DragonFly 3D World ZEISS edition soft-
ware with simple thresholding methods. The DeepScout 
upscaled reconstruction (Fig.  15(c)) detects nearly three 

voxel resolution, referred to as the ‘DeepScout’(DS) dataset, 
as shown in Fig. 14. The results show significant improve-
ments in image quality and resolution when transitioning 
from LR to DS. The DeepScout algorithm enhances edge 
detection and delivers substantial improvements in spatial 
resolution, feature recovery, and denoising. Quantitatively, 
up to 60% more pores were detected in DS compared to 
LR, with most pores falling within the 15–30 µm diameter 
range. The HR image confirms that the actual number of 
pores is indeed higher than what the LR image reveals, indi-
cating that DS effectively refines porosity statistics.

DeepScout also enhances the morphological details of 
larger pores, attributed to the use of smaller voxels. Although 
beam hardening artifacts, such as dark streaks and bright 
edges, cannot be fully corrected (see Fig.  14, particularly 
in regions where multiple lattice nodes align along certain 
X-ray transmission paths), DeepScout recovers void details 

Fig. 14  Comparison of XRM reconstructed cross-sections from the interior volume of an Inconel 718 lattice sample, also depicted in Figure 13. 
Low-resolution (LR) data were collected at a resolution of 8 µm/voxel and reconstructed using an FDK algorithm. High-resolution (HR) slice data 
were collected at 3.5 µm/voxel and reconstructed with FDK. Resolution recovery was applied to the LR data using DeepScout (DS), which was 
trained on HR data. The LR and DS images were circularly cropped to emphasize the region of interest from the HR image

 

Fig. 13  AM Inconel 718 lattice structure scanned utilizing the RaaD capabilities of a 3D XRM (ZEISS Xradia 630 Versa). (a) Cross-sectional 
views captured with increasing magnification, starting from a 0.4X objective lens, progressing to 4X, and culminating in a 40X zoom-in. A recon-
struction using a DL-based algorithm is presented for the 40X image. (b) Higher resolution information is upscaled across the entire 3D volume 
using DL-based reconstruction
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data. Notably, finer details, such as distinguishing filled ver-
sus unfilled voids and detection of smaller voids, were evi-
dent in the DeepScout data but indiscernible in conventional 
3D XRM scans. These findings demonstrate that DL recon-
struction methods effectively recover resolution lost in low-
resolution scans while introducing minimal artifacts. To the 
authors’ knowledge, no other non-destructive methods are 
capable of imaging such small interior pores.

For further validation, destructive techniques such as 
mechanical serial sectioning or focused ion beam SEM 
(FIB-SEM) milling could be considered. However, these 
methods have limitations, including resolution constraints, 
labor-intensive preparation, and potential alteration of voids 
during processing. For the data presented in Fig. 16, a cor-
relative microscopy approach was employed to target fea-
tures identified in non-destructive 3D scans. The 3D data 
provided critical navigational guidance, with surface fea-
tures in the rendering acting as reference points (fiducials) 
to guide precise sectioning. This workflow combines rapid 
laser ablation with accurate FIB sectioning, ensuring high 
precision and reliability. This method has been rigorously 
validated across diverse sample types and is widely recog-
nized as a reliable workflow for users of ZEISS instruments. 
While the process can be adapted for use with other micro-
scope brands, it may be less efficient and reliable due to 
the lack of a fully integrated system for seamless data flow 
and precise navigation. The integration of 3D data with sec-
tioning tools is essential for achieving the level of accuracy 
demonstrated in this approach.

times more pores than the conventional reconstruction 
(Fig. 15(a)). This capability highlights the potential of com-
bining 3D XRM hardware with DL-based reconstruction 
for advanced AM characterization. The ability to upscale 
large volumes to high resolutions enables detailed para-
metric studies with improved sample statistics in less time 
compared to traditional methods. This approach accelerates 
time-to-results by requiring fewer scans to extract high-res-
olution data across the entire FOV and enhances instrument 
efficiency by minimizing redundant data acquisition.

Access to high resolution across the entire FOV allows 
researchers to probe all parts of a sample equally, eliminat-
ing the need for traditional top-down investigative routines. 
Conventional X-ray microscopy often relies on low-resolu-
tion imaging to “volumes of interest” for subsequent high- 
resolution scanning. This approach can fail at identifying 
key regions of interest when low-resolution scans lack suf-
ficient contrast or morphological differences, particularly 
for sub-micron pores that remain undetected. Additionally, 
the time required for high-resolution analysis scales linearly 
with the number of probe sites chosen. In contrast, Deep-
Scout approach enables a single-shot approach of the entire 
volume based on a deep-learning model trained on a single 
high-resolution dataset.

DeepScout reconstruction results were validated by imag-
ing a coincident cross-section of the sample using femtosec-
ond laser ablation and SEM imaging (ZEISS Crossbeam 550 
Laser). As shown in Fig. 16, the void distribution observed 
in the SEM image of the physically cross-sectioned sample 
closely matches the distribution detected in the DeepScout 

Fig. 15  (a) 3D rendering of the Inconel lattice structure scanned at low resolution in grey. (b) The orange sub-volume highlights the high-resolution 
region of interest. (c) A large section of the lattice structure, with resolution recovery applied, rendered to illustrate the enhancement in captured 
internal porosity following DeepScout reconstruction
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DeepScout may not always be easily interpretable, ongoing 
research aims to enhance its usability and generalizability 
across various materials and imaging conditions.

6  Conclusions

This paper explores advancements in multiscale character-
ization of additive manufacturing (AM) components using 
X-ray computed tomography (XCT), 3D X-ray microscopy 
(XRM), and deep learning (DL) techniques. These meth-
ods address key challenges in inspecting complex internal 
geometries and detecting defects critical to ensuring struc-
tural integrity and performance. Modern XCT and 3D XRM 
systems, particularly those equipped with RaaD capabilities, 
significantly enhance spatial resolution and imaging qual-
ity, enabling detailed visualization of internal structures and 
defects that traditional methods often fail to detect. Appli-
cations include internal defect detection, surface roughness 
evaluation, and process parameter optimization.

DL-based reconstruction methods, such as Simurgh, Dee-
pRecon, and DeepScout, have significantly enhanced XCT 
workflows by reducing scan times while preserving high-
frequency information, thereby improving resolution and 
defect detection capabilities. These advancements improve 
image quality, enable accurate porosity characterization, 
and overcome traditional limitations in resolution and FOV. 
By integrating XCT, XRM, and DL techniques, researchers 
can identify and analyze porosity and defects across mul-
tiple scales, generating dense statistical data for accurate 
analysis from sub-micrometer to macroscopic levels. This 
multiscale imaging approach provides critical insights into 

The results presented in this study demonstrate that 
incorporating DL-based reconstruction algorithms, such 
as DeepRecon and DeepScout, enables noise-free and 
resolution-recovered data, offering new opportunities for 
efficient and reliable AM characterization. This is a criti-
cal step toward advancing the understanding of the relation-
ship between processing parameters, microstructure, and 
mechanical properties. Further evaluation of DeepScout 
performance, focusing on resolution differences and recov-
erable feature sizes, is presented elsewhere [56]. Overall, 
DeepScout has demonstrated significant improvements 
in resolution recovery and feature enhancement, making 
a robust and versatile tool for materials characterization, 
particularly in AM. The results indicate that DeepScout 
consistently outperforms other methods in terms of feature 
recovery, accuracy, and reduced artifacts, effectively bridg-
ing the gap between low and high-resolution imaging and 
enabling detailed analysis of complex materials. While 
DeepScout excels in enhancing spatial resolution, its per-
formance depends on the quality and diversity of the train-
ing data, which is essential for optimal generalizability and 
accuracy in feature recovery. As an example, any misregis-
tration between the low resolution and high-resolution train-
ing images can impact performance. It is designed to handle 
resolution ratios up to 7:1, and while it performs well within 
this range, exploring higher ratios may present challenges, 
including the potential for hallucinations—spurious fea-
tures that do not exist in the original images. The algorithm 
does require increased computational effort for training 
(3–4 h) and inference (0.5 to 2 h) on a professional NVIDIA 
graphics workstation, as well as upsampled results require 
increased disk space storage depending on the upsampling 
ratio. While the operations of the neural network behind the 

Fig. 16  Comparison of two XRM cross-sectional slices (left) reconstructed using standard FDK vs the advanced DeepScout algorithm. Valida-
tion of the 2D XRM reconstructed images is done by juxtaposing them with an SEM image (right) of the Laser FIB-sectioned region, captured at 
the same location as the XRM reconstructed slices. Notably, the four prominent voids, including a central void filled with unmelted powder, are 
distinctly observable in both the DeepScout and SEM datasets
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the relationships between defects, material properties, and 
mechanical performance.

DL-enhanced workflows also streamline the rapid assess-
ment and optimization of AM parameters, enabling effi-
cient analysis of numerous samples. This supports quality 
control and accelerates the development of new alloys and 
components. Machine learning-driven optimization of XCT 
and XRM techniques improves reliability and efficiency in 
characterizing AM components, deepening understanding 
of the links between processing parameters, microstructure, 
and mechanical properties. High-throughput workflows 
enabled by XCT and DL have reduced analysis times from 
weeks to days, allowing for faster refinement of parameters 
such as laser power, velocity, and hatch spacing to improve 
part quality and process repeatability. Additionally, high-
resolution XRM scans facilitate non-destructive assessment 
of internal surfaces and trapped powder particles, offering 
valuable insights into defect formation mechanisms and 
their impact on structural integrity.

Despite challenges in generalizing DL models to diverse 
materials and imaging conditions, the demonstrated success 
of these methods underscores their transformative potential. 
As these technologies evolve, they will play an increasingly 
vital role in advancing AM, enabling the production of reli-
able, high-performance components for demanding indus-
trial applications.

This paper also highlights the importance of multiscale 
imaging approaches that integrate data from XCT, XRM, 
and SEM to provide a comprehensive view of AM com-
ponents and correlate microstructural features with per-
formance. Future research should focus on automating DL 
training, enhancing model robustness, and exploring uncer-
tainty quantification and explainable artificial intelligence to 
improve DL-based non-destructive testing. Expanding the 
generalizability of DL models across various materials and 
imaging conditions is essential for broader adoption in AM.

In conclusion, the integration of advanced XCT, 3D 
XRM, and DL techniques represents a significant leap 
forward in the characterization and quality control of AM 
parts. These methods provide valuable insights into micro-
structural features and their performance correlations across 
multiple length scales, driving innovations that enhance 
material properties, optimize production processes, and 
deliver higher-quality AM products.
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