elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Highly scaled Federated Learning Simulations for Text Classification

Rudolph, Skady und Schumann, Gerrit und Steffens, Lars und Karl, Michael und Marx Gómez, Jorge (2025) Highly scaled Federated Learning Simulations for Text Classification. 10th International Conference on Computer and Communication Systems (ICCCS 2025), 2025-04-18 - 2025-04-21, Chengdu, China.

[img] PDF - Nur DLR-intern zugänglich
1MB

Kurzfassung

When simulating federated learning scenarios, most studies use a small number of clients that have comparatively large amounts of local data. In this study, we investigated how the classification accuracy of a language model fine-tuned using federated learning changes when the same amount of data is distributed over an increasing number of clients (up to 1,000), so that the amount of data per client is steadily reduced. To this end, we conducted several experiments using an example of the wellknown "contradiction detection" classification task, which showed that the model accuracy decreased with an increasing number of clients when the number of federated training rounds remained the same. To counteract this effect and ensure that each client participates equally often in the training, we dynamically adjusted the number of federated training rounds and modified the widely used "FedAvg" method to allow a controlled client selection per training round instead of a random selection. In this way, a Bert model trained on 1,000 clients (with only 391 data instances each) achieved an accuracy that was 0.81% higher than that of a Bert model trained on 100 clients (with 3,910 data instances each) and only 0.18% below the accuracy of a Bert model trained conventionally (non-federated). These results can be relevant for all federated learning use cases where model accuracy losses caused by a high number of clients need to be compensated, especially in the case of transformer-based language models such as Bert.

elib-URL des Eintrags:https://elib.dlr.de/215919/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Highly scaled Federated Learning Simulations for Text Classification
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Rudolph, SkadyDept. of Business Informatics, University of OldenburgNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schumann, GerritDept. of Business Informatics, University of OldenburgNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Steffens, LarsLars.Steffens (at) dlr.dehttps://orcid.org/0000-0002-2561-0687NICHT SPEZIFIZIERT
Karl, Michaelmichael.karl (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Marx Gómez, JorgeDept. of Business Informatics, University of OldenburgNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2025
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Federated Learning, Simulation, Federated Averaging, Contradiction Detection, Text Classification
Veranstaltungstitel:10th International Conference on Computer and Communication Systems (ICCCS 2025)
Veranstaltungsort:Chengdu, China
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:18 April 2025
Veranstaltungsende:21 April 2025
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):V - keine Zuordnung
Standort: Rhein-Sieg-Kreis
Institute & Einrichtungen:Institut für KI-Sicherheit
Hinterlegt von: Steffens, Lars
Hinterlegt am:19 Aug 2025 08:41
Letzte Änderung:19 Aug 2025 08:41

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.