Lehmler, Stephan Johann und Saif-ur-Rehman, Muhammad und Glasmachers, Tobias und Iossifidis, Ioannis (2025) Distributional properties of ReLU-activations in Artificial Neural Networks that learn by memorization. The 11th International Conference on Machine Learning, Optimization, and Data Science, 2025-09-21 - 2025-09-24, Riva del Sole, Italien.
![]() |
PDF
- Nur DLR-intern zugänglich
823kB |
Kurzfassung
We investigate the distributional properties of layers in Artificial Neural Network (ANN) that can be used to distinguish between networks learning by generalization and memorizing networks. Starting from the notion of memorization being essentially definable as learning rare features of the input data, we propose the activation probability of Rectified Linear Units (ReLU)-neurons as an important indicator of memorization. Based on this idea, we postulate hypotheses on the activation probability and correlation structure of singular neurons in memorizing ANN and empirically evaluate them on classification tasks. We then combine these ideas with previous work on using Poisson process models of activations in ANN and extend them to consider the correlation between neurons. Using this approach, we simulate the effect of memorizing neurons on distributional properties of weight matrices and activation magnitudes. Our initial findings show how the activation frequency and intra-layer correlation structure can be used to distinguish generalizing from memorizing networks.
elib-URL des Eintrags: | https://elib.dlr.de/215877/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Distributional properties of ReLU-activations in Artificial Neural Networks that learn by memorization | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2025 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Name der Reihe: | Springer Lecture Notes in Computer Science | ||||||||||||||||||||
Status: | akzeptierter Beitrag | ||||||||||||||||||||
Stichwörter: | Artificial Neural Networks Memorization Statistical Modeling | ||||||||||||||||||||
Veranstaltungstitel: | The 11th International Conference on Machine Learning, Optimization, and Data Science | ||||||||||||||||||||
Veranstaltungsort: | Riva del Sole, Italien | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 21 September 2025 | ||||||||||||||||||||
Veranstaltungsende: | 24 September 2025 | ||||||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||||||
DLR - Forschungsgebiet: | D KIZ - Künstliche Intelligenz | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - Kurzstudien [KIZ] | ||||||||||||||||||||
Standort: | Ulm | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für KI-Sicherheit | ||||||||||||||||||||
Hinterlegt von: | Lehmler, Stephan | ||||||||||||||||||||
Hinterlegt am: | 19 Aug 2025 08:37 | ||||||||||||||||||||
Letzte Änderung: | 22 Aug 2025 14:46 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags