Qu, Zhan and Yuan, Shuzhou and Färber, Michael and Brennfleck, Marius and Wartha, Niklas Louis and Stephan, Anton (2025) Explainable LiDAR 3D Point Cloud Segmentation and Clustering for Detecting Airplane-Generated Wind Turbulence. In: 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2025, pp. 2504-2513. ACM KDD 2025, 2025-08-03 - 2025-08-07, Toronto, Canada. doi: 10.1145/3690624.3709436. ISBN 9798400712456.
|
PDF
4MB |
Official URL: https://dx.doi.org/10.1145/3690624.3709436
Abstract
Wake vortices - strong, coherent air turbulences created by aircrafts-pose a significant risk to aviation safety and therefore require accurate and reliable detection methods. In this paper, we present an advanced, explainable machine learning method that utilizes Light Detection and Ranging (LiDAR) data for effective wake vortex detection. Our method leverages a dynamic graph CNN (DGCNN) with semantic segmentation to partition a 3D LiDAR point cloud into meaningful segments. Further refinement is achieved through clustering techniques. A novel feature of our research is the use of a perturbation-based explanation technique, which clarifies the model’s decision-making processes for air traffic regulators and controllers, increasing transparency and building trust. Our experimental results, based on measured and simulated LiDAR scans compared against four baseline methods, underscore the effectiveness and reliability of our approach. This combination of semantic segmentation and clustering for real-time wake vortex tracking significantly advances aviation safety measures, ensuring that these are both effective and comprehensible.
| Item URL in elib: | https://elib.dlr.de/215725/ | ||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||||||
| Additional Information: | Funding: German Federal Ministry for Digital and Transport (mFUND project “KIWI”); Deutsches Zentrum für Luft- und Raumfahrt (Wetter und Disruptive Ereignisse). | ||||||||||||||||||||||||||||
| Title: | Explainable LiDAR 3D Point Cloud Segmentation and Clustering for Detecting Airplane-Generated Wind Turbulence | ||||||||||||||||||||||||||||
| Authors: |
| ||||||||||||||||||||||||||||
| Date: | 2025 | ||||||||||||||||||||||||||||
| Journal or Publication Title: | 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2025 | ||||||||||||||||||||||||||||
| Refereed publication: | Yes | ||||||||||||||||||||||||||||
| Open Access: | Yes | ||||||||||||||||||||||||||||
| Gold Open Access: | No | ||||||||||||||||||||||||||||
| In SCOPUS: | Yes | ||||||||||||||||||||||||||||
| In ISI Web of Science: | No | ||||||||||||||||||||||||||||
| DOI: | 10.1145/3690624.3709436 | ||||||||||||||||||||||||||||
| Page Range: | pp. 2504-2513 | ||||||||||||||||||||||||||||
| ISBN: | 9798400712456 | ||||||||||||||||||||||||||||
| Status: | Published | ||||||||||||||||||||||||||||
| Keywords: | Wake Vortex Detection, LiDAR scan, 3D Point Cloud Segmentation, Explainability | ||||||||||||||||||||||||||||
| Event Title: | ACM KDD 2025 | ||||||||||||||||||||||||||||
| Event Location: | Toronto, Canada | ||||||||||||||||||||||||||||
| Event Type: | international Conference | ||||||||||||||||||||||||||||
| Event Start Date: | 3 August 2025 | ||||||||||||||||||||||||||||
| Event End Date: | 7 August 2025 | ||||||||||||||||||||||||||||
| HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
| HGF - Program: | Aeronautics | ||||||||||||||||||||||||||||
| HGF - Program Themes: | Air Transportation and Impact | ||||||||||||||||||||||||||||
| DLR - Research area: | Aeronautics | ||||||||||||||||||||||||||||
| DLR - Program: | L AI - Air Transportation and Impact | ||||||||||||||||||||||||||||
| DLR - Research theme (Project): | L - Climate, Weather and Environment | ||||||||||||||||||||||||||||
| Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
| Institutes and Institutions: | Institute of Atmospheric Physics > Applied Meteorology | ||||||||||||||||||||||||||||
| Deposited By: | Wartha, Niklas Louis | ||||||||||||||||||||||||||||
| Deposited On: | 11 Aug 2025 07:23 | ||||||||||||||||||||||||||||
| Last Modified: | 03 Nov 2025 10:53 |
Repository Staff Only: item control page