elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Physics-informed machine learning for inverse problems in condition monitoring

Danwitz, Max und Knechtges, Philipp und Sahin, Tarik und Franz, Philip Imanuel und Popp, Alexander (2025) Physics-informed machine learning for inverse problems in condition monitoring. Second International Conference Math 2 Product (M2P 2025), 2025-06-04 - 2025-06-06, Valencia, Spanien.

[img] PDF
124kB

Kurzfassung

Modern societies heavily rely on an efficient and highly available transport infrastructure, to provide their citizens with goods and services. To keep the highway and railway network fit-for-service, monitoring, repair and replacement of bridges must be ensured even with limited financial and human resources. The structural monitoring of bridges in particular is a manual process that becomes significantly more time-consuming as the structures age and their condition deteriorates. To meet the growing demand for cost-effective monitoring and damage assessment solutions, interpretable digital methods for continuous, sensor-based condition monitoring of structures are essential. Starting from a mechanical model of a structure that takes the system state into account when responding to loads in terms of measurable quantities, such as displacements or accelerations, the task of damage assessment, including detection, localization and quantification, is formulated as inverse problem of system identification. This talk presents an overview of scientific machine learning methods that can contribute to solving this inverse problem, including physics-informed neural networks and FEM-based neural networks or sparse Bayesian learning [1, 2]. Selected methods are tested with a numerical benchmark problem of a two-span beam structure [3]. The benchmark problem specifically accounts for variable operational and environmental conditions, such as variations of the ambient temperature regularly faced when monitoring bridges. Moreover, an extension to real-world sensor data from a measurement campaign on a two-span bridge and a comparison with base-line operational modal analysis models is planned [4]. References: [1] von Danwitz, M., Kochmann, T. T., Sahin, T., Wimmer, J., Braml, T., & Popp, A. (2023). Hybrid Digital Twins: A Proof of Concept for Reinforced Concrete Beams. PAMM, 22(1), Article e202200146. https://doi.org/10.1002/pamm.202200146 [2] Griese, F., Hoppe, F., Rüttgers, A., & Knechtges, P. (2024, September 6). FEM-based Neural Networks for Solving Incompressible Fluid Flows and Related Inverse Problems. ArXiv preprint. https://doi.org/10.48550/arXiv.2409.04067 [3] Tatsis, K., & Chatzi, E. (2019). A numerical benchmark for system identification under operational and environmental variability. In S. D. Amador, R. Brincker, E. I. Katsanos, M. López Aenlle, & P. Fernández (Eds.), 8th IOMAC - International Operational Modal Analysis Conference, Proceedings (pp. 101-106). International Group of Operations Modal Analysis. https://doi.org/10.3929/ethz-b-000385231 [4] Jaelani, Y., Klemm, A., Wimmer, J., Seitz, F., Köhncke, M., Marsili, F., Mendler, A., von Danwitz, M., Henke, S., Gündel, M., Braml, T., Spannaus, M., Popp, A., & Keßler, S. (2023). Developing a benchmark study for bridge monitoring. Steel Construction, 16(4), 215–225. https://doi.org/10.1002/stco.202200037

elib-URL des Eintrags:https://elib.dlr.de/215613/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Physics-informed machine learning for inverse problems in condition monitoring
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Danwitz, Maxmax.vondanwitz (at) dlr.dehttps://orcid.org/0000-0002-2814-0027NICHT SPEZIFIZIERT
Knechtges, PhilippPhilipp.Knechtges (at) dlr.dehttps://orcid.org/0000-0002-4849-0593NICHT SPEZIFIZIERT
Sahin, Tariktarik.sahin (at) unibw.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Franz, Philip Imanuelphilip.franz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Popp, Alexanderalexander.popp (at) dlr.dehttps://orcid.org/0000-0002-8820-466XNICHT SPEZIFIZIERT
Datum:4 Juni 2025
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Physik-informiertes Maschinelles Lernen, Systemzustandsüberwachung
Veranstaltungstitel:Second International Conference Math 2 Product (M2P 2025)
Veranstaltungsort:Valencia, Spanien
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:4 Juni 2025
Veranstaltungsende:6 Juni 2025
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:keine Zuordnung
DLR - Forschungsgebiet:keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):keine Zuordnung
Standort: Rhein-Sieg-Kreis
Institute & Einrichtungen:Institut für den Schutz terrestrischer Infrastrukturen > Simulationsmethoden für Digitale Zwillinge
Institut für den Schutz terrestrischer Infrastrukturen
Institut für Softwaretechnologie > High-Performance Computing
Institut für Softwaretechnologie
Hinterlegt von: von Danwitz, Max
Hinterlegt am:31 Jul 2025 09:33
Letzte Änderung:31 Jul 2025 09:33

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.