elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Can Uncertainty Quantification Benefit From Label Embeddings? A Case Study on Local Climate Zone Classification

Schweden, Christoph und Hechinger, Katharina und Kauermann, Göran und Zhu, Xiao Xiang (2025) Can Uncertainty Quantification Benefit From Label Embeddings? A Case Study on Local Climate Zone Classification. IEEE Transactions on Geoscience and Remote Sensing (63), Seite 4409414. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2025.3562233. ISSN 0196-2892.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
4MB

Offizielle URL: https://ieeexplore.ieee.org/abstract/document/10988683

Kurzfassung

Modern deep learning models have achieved superior performance in almost all fields of remote sensing. An often neglected aspect of these models is the quantification and evaluation of predictive uncertainties. Regarding a classification task, this means that the focus of the analysis solely lies on performance metrics such as accuracy or the loss. On the other hand, a notion of uncertainty indicates the model’s indecisiveness among the given classes and is essential to understand where the model struggles to classify the data samples. In this work, three levels of uncertainty are distinguished, starting with the typical softmax pseudo-probabilities as level-1 uncertainty. As a next level, the more flexible Dirichlet framework is utilized as model output space, and hereby also, a Bayesian setting with an uninformative prior is considered. For the level-3 uncertainty, an empirical Bayes setting is incorporated where a latent embedding of the label space is iteratively estimated by the marginal likelihood of the fully parameterized label space. The estimated embeddings are then learned by the network in three different settings: Two regression losses use the embeddings directly, while the closed-form solution of the Kullback-Leibler (KL) divergence uses the embedding parameterized as a Dirichlet distribution. To assess the different levels of uncertainty, the label evaluation subset of the So2Sat LCZ42 dataset, which contains label votes from multiple remote sensing experts, is investigated. The predictive uncertainties are evaluated by means of out-of-distribution (OoD) detection and calibration performance. Overall, the embedding-based approaches show strong performance for calibration, while, for the OoD experiments, the Bayesian Dirichlet setting with an uninformative prior achieves the best performance. In conclusion, embedded labels offer a flexible framework for incorporating uncertain or ambiguous labels into a supervised training setup. They could be highly beneficial for applications in fields such as urban planning or disaster response.

elib-URL des Eintrags:https://elib.dlr.de/215562/
Dokumentart:Zeitschriftenbeitrag
Titel:Can Uncertainty Quantification Benefit From Label Embeddings? A Case Study on Local Climate Zone Classification
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schweden, ChristophChristoph.Koller (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hechinger, Katharinakatharina.hechinger (at) stat.uni-muenchen.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kauermann, Görangoeran.kauermann (at) stat.uni-muenchen.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiao.zhu (at) tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2025
Erschienen in:IEEE Transactions on Geoscience and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1109/TGRS.2025.3562233
Seitenbereich:Seite 4409414
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:veröffentlicht
Stichwörter:Calibration, deep learning, label embedding, land cover classification, uncertainty quantification (UQ)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Koller, Christoph
Hinterlegt am:06 Aug 2025 12:21
Letzte Änderung:07 Aug 2025 15:34

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.