elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Extraction of Robotic Surface Processing Strategies from Human Demonstrations

Eiband, Thomas und Leimbach, Lars und Nottensteiner, Korbinian und Albu-Schäffer, Alin Olimpiu (2025) Extraction of Robotic Surface Processing Strategies from Human Demonstrations. In: 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2025. IEEE. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025), 2025-10-19 - 2025-10-25, Hangzhou, China. doi: 10.1109/IROS60139.2025.11247267.

[img] PDF
4MB

Offizielle URL: https://ieeexplore.ieee.org/document/11247267

Kurzfassung

Learning from Demonstration (LfD) is a widely used approach for teaching robot motion, but more sophisticated strategies are required to address complex tasks such as surface processing. Sanding is an example where comprehensive strategies are necessary to ensure complete and efficient coverage of the surface of a workpiece. In this paper, we present a system that captures human motions and contact forces during surface processing using a powered sanding tool. We provide a publicly available dataset that consists of demonstrations for various geometric shapes with the goal to extract robot execution strategies through LfD from a variety of users. This is in contrast to conventional LfD, which generates a policy directly from one or multiple trajectories provided by a single user. Further, we provide a data analysis that reveals key insights into how humans adapt their strategies to different surface geometries and extract robot execution strategies from it. Finally, we conduct two basic robotic experiments justifying the approach of strategy extraction. Our findings contribute to the understanding of human surface-processing behavior and lay the foundation for developing more effective robotic surface processing strategies.

elib-URL des Eintrags:https://elib.dlr.de/215557/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Extraction of Robotic Surface Processing Strategies from Human Demonstrations
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Eiband, ThomasThomas.Eiband (at) dlr.dehttps://orcid.org/0000-0002-1074-9504198572777
Leimbach, LarsTechnical University of MunichNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Nottensteiner, Korbiniankorbinian.nottensteiner (at) dlr.dehttps://orcid.org/0000-0002-6016-6235NICHT SPEZIFIZIERT
Albu-Schäffer, Alin OlimpiuAlin.Albu-Schaeffer (at) dlr.dehttps://orcid.org/0000-0001-5343-9074198572778
Datum:27 November 2025
Erschienen in:2025 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2025
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.1109/IROS60139.2025.11247267
Verlag:IEEE
Status:veröffentlicht
Stichwörter:robot; surface processing; surface finishing; sanding; robotic sanding; dataset; data acquisition; force data; learning from demonstration; programming by demonstration; feature extraction; robot learning; strategy extraction; machine learning;
Veranstaltungstitel:IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
Veranstaltungsort:Hangzhou, China
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:19 Oktober 2025
Veranstaltungsende:25 Oktober 2025
Veranstalter :IEEE/RSJ
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - ASPIRO - Aerospace production using intelligent robotic systems, R - Synergieprojekt ASPIRO, R - Synergieprojekt Factory of the Future [RO]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013) > Kognitive Robotik
Hinterlegt von: Eiband, Thomas
Hinterlegt am:02 Dez 2025 21:17
Letzte Änderung:02 Dez 2025 21:17

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.