elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Deep Learning-based GNSS-R Global Vegetation Water Content: Dataset, Estimation, and Uncertainty

Zhao, Daixin und Asgarimehr, Milad und Heidler, Konrad und Wickert, Jens und Zhu, Xiao Xiang und Mou, Lichao (2025) Deep Learning-based GNSS-R Global Vegetation Water Content: Dataset, Estimation, and Uncertainty. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 18, Seiten 17386-17404. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/jstars.2025.3584704. ISSN 1939-1404. (im Druck)

[img] PDF - Postprintversion (akzeptierte Manuskriptversion)
18MB

Kurzfassung

Vegetation water content (VWC) is a crucial parameter for understanding vegetation dynamics and hydrological cycle on Earth. With rapid climate changes in recent years, monitoring VWC with high spatiotemporal coverage on a global scale is of paramount importance. Yet, traditional in situ measurements are constrained in remote and densely vegetated regions. Additionally, existing spaceborne remote sensing methods face challenges due to poor cloud penetration capabilities, soil moisture interference, and inadequate temporal resolution. Spaceborne global navigation satellite system reflectometry (GNSS-R) has demonstrated promising potential to overcome these limitations in vegetation monitoring. In this study, we propose a scheme for deep learning-based GNSS-R VWC assessment, leveraging a rapidly growing amount of GNSS-R data with an unprecedented sampling rate. We introduce a triplet dataset, which consists of measurements from the cyclone GNSS (CYGNSS), global land data assimilation system (GLDAS), and soil moisture active passive (SMAP), spanning over three years. Validation is performed using several benchmark models with the proposed dataset. Furthermore, the models’ predictive uncertainty is quantified with Monte Carlo (MC) dropout technique to provide a trustworthy representation of estimations. Experimental evaluation of the models demonstrates good consistency between the estimated VWC and ground truth, with a minimum root mean square deviation (RMSD) of 1.0988 kg/m2 and a bias of 0.002 kg/m2 over a twelve-month test period. Moreover, a daily global VWC estimation is achieved through the proposed pipeline, filling the gaps of current products and enabling rapid measurements with enhanced temporal availability. We will make the proposed dataset publicly available.

elib-URL des Eintrags:https://elib.dlr.de/215504/
Dokumentart:Zeitschriftenbeitrag
Titel:Deep Learning-based GNSS-R Global Vegetation Water Content: Dataset, Estimation, and Uncertainty
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Zhao, Daixindaixin.zhao (at) dlr.dehttps://orcid.org/0000-0003-2766-1338NICHT SPEZIFIZIERT
Asgarimehr, MiladGeoForschungszentrum PotsdamNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Heidler, KonradKonrad.Heidler (at) tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wickert, JensGeoForschungsZentrum PotsdamNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiaoxiang.zhu (at) tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Mou, Lichaolichao.mou (at) tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2025
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:18
DOI:10.1109/jstars.2025.3584704
Seitenbereich:Seiten 17386-17404
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:im Druck
Stichwörter:CYGNSS, GNSS-R, Deep learning, Earth Observation AI4EO, Vegetation water content
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz, R - Innovative Fernerkundungsverfahren
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Rösel, Dr. Anja
Hinterlegt am:06 Aug 2025 12:19
Letzte Änderung:08 Sep 2025 12:58

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.