Prosperino, Davide and Ma, Haochun and Gross, Vincent and Räth, Christoph (2025) Tailored minimal reservoir computing: Connecting nonlinearities in the input data with nonlinearities in the reservoir. DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM), 2025-03-16 - 2025-03-21, Regensburg, Deutschland.
Full text not available from this repository.
Abstract
The traditional setup of reservoir computing (RC) for predicting time series uses random matrices to define the underlying network and the input layer. Here, we show that a few modifications, which eliminate randomness and minimize computational resources and data requirements, lead to significant and robust improvements in short- and long-term predictive performance. We introduce block-diagonal reservoirs, which implies that a reservoir can be composed of multiple smaller reservoirs. Further, the non-linear activation function at the nodes can be dispensed with if the non-linear step in the analysis chain is shifted to the output layer. The input weights are determined according to well-defined rules. Any random initialization has thus been eliminated. By varying the remaining four hyperparameters, it is now possible to systematically investigate the transition from a linear, disjunct mapping of the input data to the output data to a combined nonlinear one. It is further demonstrated that there is a connection between the nonlinearities in the input data and the nonlinearities in the reservoir such that the best prediction results are obtained when both nonlinearities match. It becomes thus possible to define an optimally tailored setup for minimal RC for data sets with given nonlinearities.
| Item URL in elib: | https://elib.dlr.de/215304/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
| Title: | Tailored minimal reservoir computing: Connecting nonlinearities in the input data with nonlinearities in the reservoir | ||||||||||||||||||||
| Authors: |
| ||||||||||||||||||||
| Date: | 2025 | ||||||||||||||||||||
| Refereed publication: | No | ||||||||||||||||||||
| Open Access: | No | ||||||||||||||||||||
| Gold Open Access: | No | ||||||||||||||||||||
| In SCOPUS: | No | ||||||||||||||||||||
| In ISI Web of Science: | No | ||||||||||||||||||||
| Status: | Published | ||||||||||||||||||||
| Keywords: | Complex Systems, Machine Learning, Reservoir Computing, Prediction | ||||||||||||||||||||
| Event Title: | DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM) | ||||||||||||||||||||
| Event Location: | Regensburg, Deutschland | ||||||||||||||||||||
| Event Type: | international Conference | ||||||||||||||||||||
| Event Start Date: | 16 March 2025 | ||||||||||||||||||||
| Event End Date: | 21 March 2025 | ||||||||||||||||||||
| Organizer: | Deutsche Physikalische Gesellschaft | ||||||||||||||||||||
| HGF - Research field: | other | ||||||||||||||||||||
| HGF - Program: | other | ||||||||||||||||||||
| HGF - Program Themes: | other | ||||||||||||||||||||
| DLR - Research area: | Digitalisation | ||||||||||||||||||||
| DLR - Program: | D KIZ - Artificial Intelligence | ||||||||||||||||||||
| DLR - Research theme (Project): | D - short study [KIZ] | ||||||||||||||||||||
| Location: | Oberpfaffenhofen | ||||||||||||||||||||
| Institutes and Institutions: | Institute of Materials Physics in Space > Scientific Experiments MP | ||||||||||||||||||||
| Deposited By: | Räth, Christoph | ||||||||||||||||||||
| Deposited On: | 11 Aug 2025 12:29 | ||||||||||||||||||||
| Last Modified: | 11 Aug 2025 12:29 |
Repository Staff Only: item control page