Willibald, Christoph und Lee, Dongheui (2025) Hierarchical task decomposition for execution monitoring and error recovery: Understanding the rationale behind task demonstrations. The International Journal of Robotics Research. SAGE Publications. doi: 10.1177/02783649251352112. ISSN 0278-3649.
![]() |
PDF
- Preprintversion (eingereichte Entwurfsversion)
13MB |
![]() |
PDF
- Verlagsversion (veröffentlichte Fassung)
4MB |
Offizielle URL: https://journals.sagepub.com/doi/full/10.1177/02783649251352112
Kurzfassung
Multi-step manipulation tasks where robots interact with their environment and must apply process forces based on the perceived situation remain challenging to learn and prone to execution errors. Accurately simulating these tasks is also difficult. Hence, it is crucial for robust task performance to learn how to coordinate end-effector pose and applied force, monitor execution, and react to deviations. To address these challenges, we propose a learning approach that directly infers both low- and high-level task representations from user demonstrations on the real system. We developed an unsupervised task segmentation algorithm that combines intention recognition and feature clustering to infer the skills of a task. We leverage the inferred characteristic features of each skill in a novel unsupervised anomaly detection approach to identify deviations from the intended task execution. Together, these components form a comprehensive framework capable of incrementally learning task decisions and new behaviors as new situations arise. Compared to state-of-the-art learning techniques, our approach significantly reduces the required amount of training data and computational complexity while efficiently learning complex in-contact behaviors and recovery strategies. Our proposed task segmentation and anomaly detection approaches outperform state-of-the-art methods on force-based tasks evaluated on two different robotic systems.
elib-URL des Eintrags: | https://elib.dlr.de/215291/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Hierarchical task decomposition for execution monitoring and error recovery: Understanding the rationale behind task demonstrations | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 8 Juli 2025 | ||||||||||||||||
Erschienen in: | The International Journal of Robotics Research | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
DOI: | 10.1177/02783649251352112 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | SAGE Publications | ||||||||||||||||
ISSN: | 0278-3649 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Learning from demonstration, unsupervised segmentation, anomaly detection, incremental learning, contact-based manipulation | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt Factory of the Future, V - ASPIRO - Aerospace production using intelligent robotic systems, R - Synergieprojekt Factory of the Future [RO] | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) | ||||||||||||||||
Hinterlegt von: | Willibald, Christoph | ||||||||||||||||
Hinterlegt am: | 15 Jul 2025 15:08 | ||||||||||||||||
Letzte Änderung: | 15 Jul 2025 15:08 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags