elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Koopman-based Modeling for Rocket Landing

Cataldo, Filippo (2025) Koopman-based Modeling for Rocket Landing. Masterarbeit, Politecnico di Milano.

[img] PDF
3MB

Offizielle URL: https://www.politesi.polimi.it/

Kurzfassung

The rocket landing problem has been one of the main interests of the space sector in the last decades and, more recently, the need for a fast and efficient way to solve precisely the guidance problem has emerged as crucial for reusability purposes. In this context, Koopman Operator Theory is promising because of its ability to globally linearize an un- controlled autonomous system, by lifting the state onto a set of observables. In general, the conditions to include the control in a linear way are quite restrictive, but a bilinear model can be obtained with almost no further approximations. Well-established methods employ a fixed dictionary of observables, but more recent studies show that it is beneficial, in terms of accuracy, to learn a dictionary through neural network optimization. In this work, the atmospheric, fuel-optimal, rocket landing problem is addressed with the aim of assessing if a Koopman model can be used to successfully solve the Optimal Control Prob- lem and if it is computationally advantageous. The main contributions of this thesis are the extension of dictionary learning techniques to include control and the formulation of a new framework to estimate a bilinear control model, after obtaining the equivalent linear modeling of the free dynamics. It is shown that dictionary learning methods provide more accurate linear control models than standard methods. The resulting dynamical model is used to build a Linear Program that can be solved efficiently; on the other hand, when a Koopman bilinear model is used, a solution can be found, but with poor computational efficiency.

elib-URL des Eintrags:https://elib.dlr.de/215036/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Koopman-based Modeling for Rocket Landing
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Cataldo, FilippoPolitecnico di MilanoNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
DLR-Supervisor:
BeitragsartDLR-SupervisorInstitution oder E-Mail-AdresseDLR-Supervisor-ORCID-iD
Thesis advisorSagliano, MarcoDLRhttps://orcid.org/0000-0003-1026-0693
Datum:Juli 2025
Erschienen in:Koopman-based Modeling for Rocket Landing
Open Access:Ja
Seitenanzahl:128
Status:veröffentlicht
Stichwörter:Koopman operator, rocket landing, trajectory optimization, fuel-optimal, convex model, bilinear model, machine learning, dictionary learning
Institution:Politecnico di Milano
Abteilung:Department of Aerospace Science and Technology
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Raumtransport
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RP - Raumtransport
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt CALLISTO [RP]
Standort: Bremen
Institute & Einrichtungen:Institut für Raumfahrtsysteme > Navigations- und Regelungssysteme
Hinterlegt von: Sagliano, Marco
Hinterlegt am:26 Sep 2025 09:57
Letzte Änderung:26 Sep 2025 09:57

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.