
Koopman-based Modeling for
Rocket Landing

Tesi di Laurea Magistrale in
Space Engineering - Ingegneria Spaziale

Author: Filippo Maria Cataldo

Student ID: 217822
Advisor: Prof. Francesco Topputo
Co-advisor: Dr. Marco Sagliano
Academic Year: 2024-25

i

Abstract

The rocket landing problem has been one of the main interests of the space sector in the
last decades and, more recently, the need for a fast and efficient way to solve precisely
the guidance problem has emerged as crucial for reusability purposes. In this context,
Koopman Operator Theory is promising because of its ability to globally linearize an un-
controlled autonomous system, by lifting the state onto a set of observables. In general,
the conditions to include the control in a linear way are quite restrictive, but a bilinear
model can be obtained with almost no further approximations. Well-established methods
employ a fixed dictionary of observables, but more recent studies show that it is beneficial,
in terms of accuracy, to learn a dictionary through neural network optimization. In this
work, the atmospheric, fuel-optimal, rocket landing problem is addressed with the aim of
assessing if a Koopman model can be used to successfully solve the Optimal Control Prob-
lem and if it is computationally advantageous. The main contributions of this thesis are
the extension of dictionary learning techniques to include control and the formulation of a
new framework to estimate a bilinear control model, after obtaining the equivalent linear
modeling of the free dynamics. It is shown that dictionary learning methods provide more
accurate linear control models than standard methods. The resulting dynamical model is
used to build a Linear Program that can be solved efficiently; on the other hand, when a
Koopman bilinear model is used, a solution can be found, but with poor computational
efficiency.

Keywords: rocket landing, optimal control, Koopman theory, deep learning

Sommario

Il problema dell’atterraggio dei razzi è stato uno degli interessi principali del settore
spaziale negli ultimi decenni e, più recentemente, è emersa come cruciale la necessità di
risolvere in modo preciso, veloce ed efficiente il problema di guida, soprattutto in vista
della riutilizzabilità degli stessi. In questo contesto, la Teoria degli Operatori di Koopman
si rivela promettente per la sua capacità di linearizzare globalmente un sistema autonomo
non controllato, utilizzando un insieme di osservabili dello stato. In generale, le ipotesi
per includere il controllo in modo lineare sono piuttosto restrittive, ma un modello bi-
lineare può essere costruito senza particolari approssimazioni. Metodi ben consolidati
utilizzano un dizionario di osservabili statico, ma studi più recenti mostrano quanto sia
utile, in termini di accuratezza, apprendere un dizionario attraverso l’ottimizzazione di
una rete neurale. In questo lavoro viene affrontato il problema di atterraggio atmosferico
con utilizzo ottimale di combustibile, con l’obiettivo di stabilire se un modello di Koopman
possa essere usato per risolvere con successo il Problema di Controllo Ottimo e se possa
essere vantaggioso dal punto di vista computazionale. I contributi principali di questa tesi
sono l’estensione dei metodi con apprendimento del dizionario a modelli che includano il
controllo e la formulazione di una nuova procedura per stimare un modello bilineare con
controllo, dopo aver ottenuto l’equivalente modello lineare della dinamica libera. Si di-
mostra che i metodi con apprendimento del dizionario sono in grado di fornire modelli
lineari che includano il controllo con maggiore accuratezza dei metodi tradizionali. Il
modello dinamico che ne risulta viene usato per costruire un Programma Lineare che può
essere risolto in modo efficiente; d’altra parte, quando viene utilizzato un modello di Koop-
man bilineare, una soluzione può essere ottenuta, ma con scarsa efficienza computazionale.

Parole chiave: atterraggio dei razzi, controllo ottimo, teoria di Koopman, apprendi-
mento profondo

v

Contents

Abstract i

Sommario iii

Contents v

Introduction 1

1 Literature Survey 5
1.1 Optimal Control . 5

1.1.1 Pontryagin’s Minimum Principle . 6
1.1.2 Two-Point Boundary-Value Problem 6
1.1.3 Direct and Indirect Methods . 6

1.2 Optimization . 8
1.2.1 Karush-Kuhn-Tucker Conditions . 8
1.2.2 Interior Point Methods . 9

1.3 Rocket Landing . 10
1.3.1 1D Example . 13

2 Koopman Theory 17
2.1 Preliminaries . 17

2.1.1 Uncontrolled Systems . 17
2.1.2 Controlled Systems . 19

2.2 Approaches . 22
2.2.1 Galerkin Method . 22
2.2.2 Extended Dynamic Mode Decomposition 23
2.2.3 Dictionary Learning . 26
2.2.4 Comparison . 29
2.2.5 Truncated Singular Value Decomposition 29

vi | Contents

2.2.6 Other Methods . 31
2.3 Motivating Examples . 32

2.3.1 Closed System . 33
2.3.2 Asymptotically Stable Duffing Oscillator 37
2.3.3 Stable Duffing Oscillator . 39
2.3.4 Non-polynomial System . 40

3 Rocket Landing 47
3.1 Environment Modeling . 47
3.2 Equations of Motion . 51

3.2.1 1D Model with Aerodynamics . 52
3.2.2 2D Model with Aerodynamics . 53
3.2.3 3D Model without Aerodynamics 54

3.3 Benchmark Rocket Landing Formulation 54
3.4 Koopman-based Rocket Landing Formulation 56

3.4.1 Koopman-based Linear Program . 58

4 Numerical Simulations 61
4.1 Koopman Model . 61

4.1.1 1D Model with Aerodynamics . 62
4.1.2 2D Model with Aerodynamics . 69
4.1.3 3D Model without Aerodynamics 78

4.2 Optimal Control . 82
4.2.1 1D Model with Aerodynamics . 83
4.2.2 2D Model with Aerodynamics . 86
4.2.3 3D Model without Aerodynamics 89

5 Conclusions 93
5.1 Lessons Learned . 93
5.2 Future Directions . 95

Bibliography 97

A Neural Network Jacobian Matrix 103

B Expression of the Aerodynamic Angles 105

List of Figures 107

List of Tables 109

List of Symbols 111

Acknowledgements 115

Alla mia famiglia.
Al Prof. Moretti.

1

Introduction

Che fai tu, luna, in ciel? dimmi, che fai,
Silenziosa luna?

Giacomo Leopardi

Extensive research is undergoing in the space sector and, among all, rocket landing is one
of the most popular branches due to the interest in reusable rockets, which are cost-saving
and can allow many more missions to be carried out. The most famous example is prob-
ably SpaceX’s Falcon 9 which has completed 445 landings up to this day.
The presence of nonlinearities in the dynamics makes it very difficult to solve the guid-
ance problem in a fast and efficient way, and some simplifications are usually made to
treat the problem. On the other hand, a high-fidelity environment is needed to have a
robust guidance, which takes the uncertainties into account. For example, the study of
endoatmospheric flights poses new challenges due to the nonlinearities introduced by the
aerodynamic forces, which are however needed for a proper environment modeling. Nu-
merical methods to solve the guidance problem onboard are sought and, to this end, new
methodologies should be explored in order to reformulate the problem in a simpler way
without approximations.
Koopman Operator Theory (KOT) [1] has gained strong interest in recent years due to its
ability to globally linearize an uncontrolled autonomous system by lifting the state onto
a set of observables [2]. Although the resulting system is, in general, infinite-dimensional,
numerous works have proven the efficacy of finite approximations. Servadio et Al. [3] have
shown the possibility to use Galerkin method with Legendre polynomials to analytically
obtain a Koopman model, when the original system has only polynomial nonlinearities.
Williams et Al. [4] introduced Extended Dynamic Mode Decomposition (EDMD), a data-
driven method to get the best approximation of the Koopman operator, given a fixed
dictionary of functions. Both methods have been successfully applied to simple problems
such as the Duffing oscillator. Hofmann et Al. [5] extended the study to Keplerian mo-
tion, with J2 perturbation and atmospheric drag.
A fixed dictionary of functions might result in spurious eigenfunctions and eigenvalues

2 | Introduction

pairs for the system. More recent studies show that it is convenient to learn a dictionary
of functions using neural networks, thereby obtaining an accurate spectrum. Li et Al.
[6] modified EDMD by introducing a dictionary optimization step: the resulting system
behaves better, with fewer basis functions.
When KOT is applied to controlled systems, the resulting model has a nonlinear depen-
dence with respect to the control. However, if the original system is control-affine, a
Koopman bilinear model can approximate the dynamics with a proper set of functions
[7]. As shown in [8] the conditions for a linear control model to be obtainable are quite
restrictive. Although many works only managed to use Koopman theory in a Model
Predictive Control framework (for example [9–11]), Hofmann et Al. [12] applied it to a
space flight, low-thrust Optimal Control Problem (OCP) with endpoint constraints, using
Galerkin method.
The main contribution of this work is the application of KOT to OCPs in the context of
rocket landing. The endoatmospheric, fuel-optimal, rocket landing problem is addressed.
A dictionary learning method is explored and extended to include control. Moreover,
a slight modification to EDMD-based methods is proposed to obtain a bilinear control
model, after computing the free-dynamics part. The first objective is to prove that KOT
can be used to achieve a solution to the OCP; secondly, it is assessed whether this ap-
proach can yield a performance improvement with respect to standard methods.
The thesis is organized as follows: chapter 1 is a summary about optimal control the-
ory, optimization techniques and rocket landing; in chapter 2 KOT is explained and the
approaches that are used in the remainder of the work are explored; in chapter 3 the mis-
sion scenario is developed and the OCP is stated; chapter 4 shows the numerical results;
chapter 5 is a summary of the main results obtained and of some future directions that
can be followed.

Notation

A part of the mathematical notation used throughout the text is specified hereafter. In
general, vectors are denoted with lowercase bold symbols, matrices with uppercase plain
symbols, scalars with generic plain symbols. Note that scalar quantities can be indicated
with either lowercase or uppercase symbols, but they can be distinguished from matrices
based on the contexts and the definitions. Matrix elements are denoted with subscripts
that indicate the index in the different dimensions; for example, Aij is the element of
matrix A in row i and column j. Vector components can be specified in a similar way,
dropping the boldface notation. When used in matricial operations, vectors are intended
as column matrices.

| Introduction 3

The i-th basis vector of reference frame j is denoted as ĵi; its k-th component is indicated
as ĵik. Vectors that depend on a reference frame have a subscript that indicates it. For
example, the i-th component of vector a in reference frame j is indicated as ai,j.
The gradient of a function must be intended as its partial derivatives with respect to all
the variables on which it depends, unless differently specified, with a subscript after ∇. In
the case of vector-valued functions, the Jacobian matrix is formed, instead. The Jacobian
matrix of a generic vector function a(x) ∈ RN , that depends on the state x ∈ Rn, is
defined as follows:

∇a(x) =



∂a1(x)

∂x1
· · · ∂a1(x)

∂xi
· · · ∂a1(x)

∂xn...
...

∂aj(x)

∂x1
· · · ∂aj(x)

∂xi
· · · ∂aj(x)

∂xn...
...

∂aN(x)

∂x1
· · · ∂aN(x)

∂xi
· · · ∂aN(x)

∂xn


The gradient of scalar-valued functions can be obtained as a particular case of the Jacobian
matrix.

5

1| Literature Survey

This chapter is intended as a summary about the state of the art in optimal control theory,
optimization techniques and rocket landing approaches.

1.1. Optimal Control

A OCP is a problem that maps functions (paths) into a scalar to be minimized [13].
This kind of problem was first introduced by Johann Bernoulli in 1696, when posing the
brachistochrone problem [14]. It involves a point mass moving on a plane, subject to a
uniform gravity field, along a frictionless track; the objective of the problem is to find the
shape of the track that minimizes the time of arrival of the particle to the desired point.
Although it could seem counterintuitive, a straight line track is not the fastest solution:
a new approach was sought. This led to the development of the Calculus of Variations,
and it was found out that the solution of the problem obeyed to the Euler-Lagrange
(EL) differential equations [13]. They can be derived by considering one parameter that
represents a small deviation from the optimal solution; the equations are then obtained
by imposing that the solution of the problem is a minimum when the variation is zero.
The EL equations, however, can solve a problem which only involves a path: to take into
account variations in a control input u and in the final time (which might not be fixed), the
EL theorem is needed, which states the necessary conditions of the solution of the problem.
The theorem introduces a costate vector λ which varies with time, and another multiplier
vector µf associated with the endpoint constraints1; the optimal solution involves some
conditions on the dynamics of the costate, as well as on their value at final time, and, most
importantly, that ∂H/∂u = 0, where the Hamiltonian H is a scalar function that depends
on the variables. Additionally, when the final time is free, a transversality condition holds.
The costate vector can also be interpreted as a sensitivity of the cost function to a change
in the associated state variable; in this way, it can be investigated how a small change
in the state from the optimal solution affects the cost value [13]. The EL theorem takes
only problems with unbounded and continuous control into account, therefore, it is not

1when other path constraints are present, other multipliers are needed.

6 1| Literature Survey

general, as very often a practical application might involve a limited amount of control
or different classes of functions. For instance, piecewise-constant functions are common
in aerospace applications where the engine power is either at the minimum or maximum
level (bang-bang control).

1.1.1. Pontryagin’s Minimum Principle

The necessity to generalize the EL theorem led to the formulation of Pontryagin’s Mini-
mum Principle (PMP) [15], which is valid for a generic control space. Despite the proof
of the principle being very long and complex, it can be summarized with the following
statement: "The Hamiltonian must be minimized over the set of all admissible controls"
[16]. It is emphasized that the optimal control is a minimum for the Hamiltonian at each
time instant, but only when it is evaluated on the optimal path of the state, i.e. it is not
a minimum for an arbitrary path. The main difference with respect to the EL theorem
is that the minimum of the Hamiltonian is no longer evaluated with its partial derivative
with respect to the control, since it is now bounded and, therefore, the minimum could
be at the edges of the admissible set.

1.1.2. Two-Point Boundary-Value Problem

Once that the necessary conditions are developed, a Two-Point Boundary-Value Problem
(TPBVP) is obtained, where the dynamics of the state and costate is known and subject
to the control, which is also known to minimize the Hamiltonian. However, not all the
initial conditions are specified. In particular both the initial and final state might not be
completely constrained: the costate variable associated with a state not constrained at
initial time has to be zero at initial conditions; the costate associated with a state not
constrained at final time has to be either zero or dependent on the terminal constraints.
For this reason, the optimal solution cannot be simply attained by propagating the initial
conditions, but requires more care to ensure that all the conditions at the boundaries are
satisfied. This is not a straightforward task and very rarely a solution can be expressed
analytically; most of the time numerical methods must be employed.

1.1.3. Direct and Indirect Methods

After having outlined the theory behind OCPs, the various approaches to solve them
can be discussed. They can be classified as direct or indirect methods. A direct method
aims at directly finding the minimum of the problem, by evaluating the cost function at
different values of the variables; a search direction must be established such that new

1| Literature Survey 7

iterates get closer to the solution. An indirect methods aims at solving PMP’s necessary
conditions, by finding the root of the set of equations [17].
There are many reasons why using a direct method is often a better choice then using
an indirect one. Direct methods do not require the explicit formulation of the necessary
conditions, which may be more or less difficult, based on the cost function, the dynamics
and the constraints involved in the problem; for this reason, an indirect method cannot
be a priori formulated, but it needs experience of the user, while a direct method can
be generalized to any OCP and used as a blackbox function. Moreover, the presence of
inequality constraints introduces the need to estimate when they are active or not, in-
creasing the number of variables [18]. Lastly, an indirect method needs an initial guess
not only of the physical variables (i.e. the state and the control), but also of the costate
and the multipliers, which usually carry no physical meaning, thereby increasing the dif-
ficulty in providing a good initial guess; however, even with a reasonable starting point,
the solution is often very sensitive to small changes in the guess. In the context of rocket
landing, examples of direct methods can be found in [19–22], whereas [23] is an example
of indirect method.
Independently from the method, the continuous-time functions of the original problem
must be converted into a finite number of parameters, i.e. the OCP is transcribed into a
finite-dimensional problem [17]. There are some techniques that can be applied to formu-
late the new problem. The Simple Shooting method assesses whether the constraints are
satisfied or not, after propagating the state initial conditions, and changes the variables
(the initial state and the algebraic variables such as the control and the final time) accord-
ingly [17]. For instance, it can be used to solve a TPBVP where the initial conditions must
be modified such that the final constraints are satisfied. A small change in the variables
can, however, have a big impact on the constraints and, for this reason, this approach can
only be used in simple problems, but the idea can be extended by dividing the path into
more segments: the initial condition of each segment is propagated until the beginning of
the next one. In this method, called Multiple Shooting, the variables include the state at
each discretization point, and new constraints are imposed to ensure continuity between
the segments (defect constraints) [17]. Even if this method increases the dimension and
complexity of the problem (more optimization variables and more constraints), it reduces
its numerical complexity. For example, the Jacobian matrix associated with the defect
constraints is very sparse, since a perturbation in the state at one point, only affects the
neighboring variables and constraints. Another problem arises when analytic propagation
cannot be performed; this requires numerical integration and collocation methods can be
applied: the solution is approximated by a function, e.g. a polynomial or a spline, and
the integral is obtained with a quadrature formula.

8 1| Literature Survey

1.2. Optimization

After following a direct approach and transcribing the problem into a finite-dimensional
one, a parameter optimization problem (program) is obtained; in general, the equations
are nonlinear, such that it is a Nonlinear Program (NLP). In the next paragraphs, a
theoretical formulation of the problem is given and, subsequently, Interior Point methods
are presented as tools to solve it.
The NLP is characterized by the optimization variables, the cost function, the equality
and inequality constraints. The constraints are taken into account by adding them to the
cost function to create the Lagrangian, after multiplication by a new set of variables, called
Lagrange multipliers or dual variables; the ones associated with inequality constraints are
greater or equal to zero. Consequently, the dual function can be defined as the minimum
value of the Lagrangian over any feasible set of optimization variables (so it depends only
on the dual variables); a very important property of the dual function is that it provides
a lower bound on the optimal value of the cost function [24]. For this reason, one would
like to know which is the best lower bound, i.e. the value of the dual function which is
closest to the solution of the optimal problem. This leads to the introduction of the dual
problem: the maximization of the dual function, subject to the constraint that the dual
variables associated with inequalities are greater or equal to zero. Likewise, the original
problem can be called primal problem. For a generic problem, weak duality holds, that is,
the optimal duality gap (the difference between the optimal cost functions of the primal
and dual problem) is not zero; in some cases, strong duality holds and the optimal duality
gap is zero. There are many qualifications that can be used to assess strong duality and
one of the most common is represented by Slater’s condition [24]. The dual problem is
also important because a dual feasible point gives raise to a certificate of suboptimality:
after denoting with εopt the difference between a primal feasible point and a dual feasible
point, the difference between the same primal point and the optimal primal point is less
than εopt, such that the point can be called εopt-suboptimal. This certificate can be used
in optimization algorithms as a stopping criteria.

1.2.1. Karush-Kuhn-Tucker Conditions

Given a problem with differentiable cost function and constraints equations, and for which
strong duality holds, the Karush-Kuhn-Tucker (KKT) necessary conditions can be defined
for the optimal primal and dual points. They comprise the feasibility of the point (i.e. the
constraints must be satisfied), the complementary slackness (either a primal inequality or
the associated dual variable is equal to zero) and the gradient of the Lagrangian function

1| Literature Survey 9

being equal to zero. In the case of a convex problem, the conditions are also sufficient,
and they become very appealing to be used in optimization algorithms. A problem is
defined as convex if the equality constraints are linear (including the dynamics) and the
inequalities outline a convex feasibility region. Convexity is a more general property than
linearity, allowing efficient optimization to be performed for a broader variety of problems
[24]. A very popular example of convex problems, especially in rocket landing applications,
is represented by problems with Second Order Cone inequalities; these kinds of problem
are referred to as Second Order Cone Programs (SOCPs). See some examples in [25–27].

1.2.2. Interior Point Methods

Many algorithms aim at solving the KKT equations (or a modified version) in the set of
variables that includes the primal and the dual ones. Among them, Interior Point meth-
ods, and in particular Primal-Dual methods, are very popular [28]. The first idea behind
them is to apply Newton’s method, modifying the search step such that the inequality
constraints are strictly satisfied (from which, interior point). This is done to avoid infea-
sible points during the search: for example, starting from a point on the boundary, the
new Newton step is likely to push outside the feasibility region. The second idea of the
method is to keep iterations from being close to the boundary. Practically, the algorithm
is built by introducing a bias term τb in the complementary slackness condition. This
leads to the definition of central path, i.e. the set of all strictly feasible points for different
values of τb. The bias term is modified through the process such that successive iterations
converge to the solution for τb = 0 (almost) through the central path. The selection of
the best bias parameter is still an active research area, and the algorithms often rely on
some merit function.
It must be pointed out that, for a generic nonlinear problem, the method has no guarantee
to converge to the global optimum and, depending on the provided initial guess, it may
converge to different local optimal solutions. This is due to the fact that, as explained
before, KKT conditions are only necessary. However, there is a big interest in reformu-
lating the problem as a convex one since in that case there are many well-established
algorithms with guarantee of convergence to a global optimum, within a certain amount
of time depending on the size of the problem. These features make convex OCPs very
appealing for autonomous guidance and onboard control.

10 1| Literature Survey

1.3. Rocket Landing

In this section, a survey about the evolution of spacecraft and rocket landing is given.
Furthermore, the simple case of 1D landing is considered and the necessary conditions of
the associated OCP are developed analytically; despite its simplicity, it gives some results
which are useful for comparison with the results of this work.
The first-generation space missions were typically of exploratory nature and ensuring pre-
cise landing was not a critical requirement; however, a minimum-fuel approach was needed
because of the limited resources available, and the problem was faced with different ap-
proximations. Early strategies employed in landing applications represent the so-called
Apollo guidance [29]. It was first developed for landing on the Moon’s surface and it is
characterized by three distinct phases: a fuel-optimal phase before preparing for landing,
a transition phase, the final translation and touchdown. The solution can be obtained by
using polynomial basis functions [30]. However, the last phase does not optimize anything,
and it just ensures that the spacecraft correctly lands in the desired position; moreover,
it only considers vacuum flight, which is a good assumption for Moon landing, but not
extensible to applications in which aerodynamic forces must be considered to reduce the
uncertainties or points of failure; this is not a strategy adequate to current standards or
needs. In a similar fashion, the gravity-turn guidance has been addressed, also taking the
aerodynamic drag force into account [31]. A gravity-turn trajectory is defined as a path
in which the only force not aligned with the velocity (and therefore the only force which
keeps the spacecraft from following a straight line) is the gravity force; this means that
the thrust force, for example, is always collinear with the velocity; the drag force, instead,
acts by definition oppositely to the velocity. It has been shown, from simulations, that,
in some way, the fuel consumption is reduced with respect to the Apollo guidance, since
the thrust always contrasts the velocity [32]. On the other hand, the solution often has a
very large terminal horizontal velocity (in the order of 500 m/s), thereby undermining the
feasibility of the solution; a workaround to this issue is to start the maneuver earlier, but
this is not always a possibility and it shows that the method is not applicable to every
initial condition. The Viking mission used for its guidance two reference trajectories from
gravity-turn optimization: one with initial high velocity and one with low velocity. The
algorithm interpolated between the two references depending on the initial conditions of
the spacecraft [33].
In subsequent missions, the need for precise landing arose as a fundamental requirement.
In fact, landing safety due to uncertainties in the control may preclude interesting parts
of the planets and impede new scientific discoveries [34]. In this context, the problem
of pinpoint landing was introduced as the landing within 100 m from the desired target

1| Literature Survey 11

[35]; it requires more robust algorithms and the modeling of a high-fidelity environment
(for example aerodynamic effects for planets with an atmosphere). As explained in the
previous sections, the OCP is transformed into a NLP through transcription and collo-
cation. A popular strategy is the application of pseudo-spectral methods, in which the
collocation points are usually the roots of a Legendre polynomial or a linear combination
of a Legendre polynomial and its derivative [36], to have quasi-spectral convergence prop-
erties. They were used in [32] to design the transition phase with a high-low-high thrust
profile: initially the throttle is at maximum level to increase the horizontal velocity and
move the spacecraft above the desired position; then the throttle is kept low to allow the
spacecraft to move; finally, the high thrust is used to make the horizontal velocity null.
However, the terminal descent phase was not designed. In [37] a class of efficient pseudo-
spectral approximations was presented, extending the method to non-smooth solutions
(not always suitable for these techniques) by introducing hard and soft collocation points.
Other works involved the development of suboptimal solutions, using polynomial basis
functions [38]. Another approach is to obtain an analytic closed-form solution without
imposing the minimum-fuel cost function [39] or using a cost function related to it [40].
In any case, either the problem is not fuel-optimal or it is formulated as a NLP for which
there is no guarantee of optimality and, more importantly, the number of iterations of the
algorithms cannot be a priori bounded.
Recent years have been characterized by a great interest towards rocket reusability and
fuel saving, which would allow many more missions to be carried out and costs to be cut:
it becomes more evident that a precise optimal solution must be found in an efficient way,
for example through convex optimization. Among the common sources of non-convexity
in rocket landing applications, there are the non-zero bounds on the thrust magnitude;
in fact, a lower limit different from zero results in a non-convex feasibility region. This
is a common constraint since once the engine has been turned on, for safety reasons,
it cannot be completely switched off until touchdown. In this context, a big shift was
introduced by Açıkmeşe et Ploen [25] that proposed a lossless convexification of the 3D
minimum-fuel problem; they considered the descent phase towards a surface-fixed target,
after the parachute phase (used to slow down the rocket), with uniform gravity and no
atmospheric effects (due to the low speed during this phase). The coupling between the
translational and attitude guidance was not considered since it makes the problem much
more complex. In general, with non-convex constraints, there are two possibilities: 1)
restrict the set of feasible solutions to a convex subset of the original set or 2) relax the
set of feasible solutions to a convex set containing the original set [41]. In the first case,
a feasible solution is produced, but the cost might be higher than the original one; in
the second case, a lower cost may be produced, but the solution could be infeasible with

12 1| Literature Survey

respect to the orignal set. The second approach was followed, reformulating the problem
in a SOCP, through the introduction of a slack variable. However, it was proven that the
solution to the new problem is not suboptimal with respect to the original one, but it is
exactly the same, hence, lossless. This is an exciting result and it represented a great step
towards real-time guidance: using ad hoc algorithms for SOCP, after discretization of the
problem and collocation with piecewise-constant functions, a solution can be obtained
in an efficient way. Other constraints can be imposed with this method: for example,
a mission could require a minimum altitude angle or a maximum speed. In particular,
in [41] the authors imposed thrust pointing constraints, since the rocket might require a
certain attitude for navigation/sensors purposes; these constraints are non-convex for a
certain range of angles, but through relaxation of the problem, they can be convexified
in a lossless way. In [42], this same approach was extended to infeasible trajectories, by
minimizing the landing position error when the initial conditions do not allow the rocket
to land in the desired position.
In [26] convex optimization was used in conjunction with pseudo-spectral transcription to
make the resulting finite-dimensional problem smaller, with the same accuracy, extend-
ing pseudo-spectral methods outside of generic NLP contexts in which they are usually
employed. To avoid dealing with free final time problems, that are non-convex, in [43]
the altitude was used instead of the time as the independent variable of the problem; this
also simplifies the expression of constraints and bounds that are altitude-dependent, such
as glide-slope or thrust direction constraints.
In [25] the aerodynamic forces were neglected, but they must be considered in order to
have a trajectory more robust with respect to uncertainties; this introduces nonlinearities
(thus non-convexities) in the dynamics. When relaxation techniques are not enough to
make the problem convex, some approximations must be made. For example, the problem
may be successively linearized and Quadratic Programs (QPs) can be solved sequentially;
however this approach may yield only a local minimum and can be characterized by slow
convergence [44]. In their work, Liu et Al. circumvented this issue by considering the
highly nonlinear entry problem with aerodynamic and propulsive forces and by reformu-
lating the control such that the problem is relaxed in a lossless way; afterwards, Successive
Convex Programming (SCP) can converge very fast to a solution. In [45], the problem
was rewritten such to minimize the presence of non-convexities, and only specific terms
were linearized.

1| Literature Survey 13

1.3.1. 1D Example

Consider the terminal descent phase in the 1D vacuum flight. The aim is to minimize the
fuel consumption while reaching the target with zero speed. The equations of motion are:



d

dt
r(t) = v(t)

d

dt
v(t) = −g + Γ(t)

m(t)

d

dt
m(t) = −Γ(t)

Vex

where r, v and m are, respectively, the position and velocity with respect to the target
and the mass of the rocket; Γ denotes the thrust which has an upper limit Γmax, g the
gravity acceleration, Vex the exhaust velocity associated with fuel consumption. The mass
variation during the flight is strictly monotonic with the time of flight [30]:

m0 −mf = m0

(
1− e(v0−gtf)/Vex

)
For this reason the problem can be reformulated as a time of flight optimization one:

find min
Γ(t),tf

tf s.t.



d

dt
r(t) = v(t)

d

dt
v(t) = −g + Γ(t)

m(t)

d

dt
m(t) = −Γ(t)

Vex

r(0) = r0

v(0) = v0

m(0) = m0

r(tf) = rf = 0

v(tf) = vf = 0

0 ≤ Γ(t) ≤ Γmax

The Hamiltonian and endpoint functions can be built:

H = λrv + λv

(
−g + Γ

m

)
− λm

Γ

Vex

Υ = λ0tf + µf
r rf + µf

vvf

14 1| Literature Survey

Consequently, the necessary conditions are derived:

d

dt
λr(t) = 0 with λr,f = µf

r

d

dt
λv(t) = −λr(t) with λv,f = µf

v

d

dt
λm(t) = λv(t)

Γ(t)

m(t)2
with λm,f = 0

d

dt
H(t) = 0 with Hf = −λ0

It follows that both λr and H are constant, while λv varies linearly in time, at most. By
applying PMP to the problem, considering the bounds on the thrust, the following result
is obtained:

Γ =


0 if λv −mλm/Vex > 0

Γmax if λv −mλm/Vex < 0

singular if λv −mλm/Vex = 0

This means that the switching function Sw = λv − mλm/Vex determines whether the
thrust is at the maximum or minimum level, depending on its sign. This is typical of
problems in which the Hamiltonian depends linearly on the control; it is also true that,
in these cases, singular arcs might be present, when the switching function is zero on a
set of positive measure (i.e. when it is zero at an uncountable number of time instants).
Suppose that this is the case: the switching function is continuous and, starting from a
point in time t̄ on one of the sets of positive measure, its expression can be obtained by
integration of its time derivative:

Sw(t) = Sw(t̄) +

∫ t

t̄

−λr − Sw(τ)
Γ(τ)

m(τ)Vex
dτ

It can be proven that, with the already mentioned necessary conditions, all the zeros of
the switching function, if present, are isolated [30]; therefore, no singular arcs are present
and the control is either at the maximum or minimum level (bang-bang).
Now suppose that t1 and t2 are two consecutive zeros of the switching function. From
continuity and nonsingularity, it follows that Sw is different from zero with constant sign
in (t1, t2). Two cases are distinguished, in this interval [30].

1. If Sw < 0, then Γ = 0. Consequently, dSw(t)/dt = −λr(t), which means that Sw is
monotonic in the interval. This is impossible because otherwise S could not be zero

1| Literature Survey 15

both in t1 and t2.

2. If Sw > 0, then Γ = Γmax. Hence, dSw(t)/dt = −λr(t) + |Sw(t)|Γmax/(Vexm(t)).
Since the second term is strictly positive, for dSw(t)/dt not to be monotonic, λr < 0.
However, in a sufficiently small neighborhood of t2, where Sw = 0, dSw(t)/dt < 0.
This is impossible since the switching function is negative and decreasing near t2,
where it should be zero.

This implies that there is at most one control switch in the optimal solution. Moreover,
the final thrust level must be maximum for optimality reasons [46]: it follows that, dur-
ing flight, the thrust is always maximum, or starts from zero and switches once before
touchdown.

17

2| Koopman Theory

In this chapter, the Koopman operator theory (KOT) is described: section 2.1 sets out
the theoretical background; in section 2.2 various practical methods to apply the theory
are explored; in section 2.3 some simple examples show the advantages and disadvantages
of the theory and the different approaches.

2.1. Preliminaries

In 1931 B.O. Koopman developed an operator theory that can transform a generic non-
linear system of differential equations into a linear one, by lifting the state onto a set
of observables [1]. The original theory, applied to uncontrolled autonomous systems, is
explained hereafter, together with its extension to controlled systems.

2.1.1. Uncontrolled Systems

Consider the following system with time variable t ∈ R:

d

dt
x(t) = f(x(t))

where x ∈ Rn is the n-dimensional state1, and f : Rn → Rn represents the continuous-time
dynamics. Its discrete counterpart, for a given time step ∆t, reads as:

xk+1 = F(xk)

where F : Rn → Rn is the discrete-time dynamics. The Koopman discrete operator Kd,
or Koopman operator, advances observables ξ : Rn → R belonging to a Hilbert space [47]:

Kdξ = ξ ◦ F
1The theory is generalizable to other n-dimensional state spaces without much effort.

18 2| Koopman Theory

If the continuous-time dynamics is smooth, the Koopman infinitesimal generator K, or
simply Koopman generator, can also be defined [8]:

d

dt
ξ(x(t)) = Kξ(x(t)) = ∇ξ(x(t)) · f(x(t))

The Koopman operator and generator are related through an exponential relation: Kd =

eK∆t [8]. A vector subspace Ψ is called Koopman-invariant if KΨ ∈ Ψ. Although a
Koopman-invariant subspace would allow a linear dynamical system to be obtained, it
must be stressed that such a subspace is, in general, infinite-dimensional; neverthe-
less, a finite Koopman-invariant subspace can be spanned by any set of eigenfunctions
{φ1, φ2, . . . , φq} [47], where φi(x) : Rn → C is an eigenfunction of the Koopman operator,
defined as follows:

d

dt
φi(x(t)) = Λiφi(x(t))

where Λi is a continuous-time eigenvalue. Discovering a set of eigenfunctions is one of the
main challenges for practical applications of the Koopman operator. Furthermore, linear
observables must often be included in the subspace to apply physical constraints or to
optimize real variables, but, except for special cases, it is impossible to find a subspace
spanned by a finite set of observables, including the state itself, that is Koopman-invariant.
However, very often a finite approximation can be obtained and, with a proper choice of
basis functions, the error decreases as the dimension increases [2]; on the other hand, a bad
choice of the set of observables can impact the dimensionality of the Koopman system or
even raise closure issues, as shown in section 2.3. By defining ψ(x) = [ψ1(x), . . . , ψq(x)]

T

as the q-dimensional vector of basis functions that span a finite Koopman-invariant sub-
space, the Koopman operator can be expressed as a matrix K ∈ Rq×q.

d

dt
ψ(x(t)) = Kψ(x(t)) (2.1)

Exploiting the exponential relation between the Koopman operator and generator, the
discrete and continuous matrices can be obtained interchangeably, with the matrix loga-
rithm and exponential functions [48]:

K =
logKd

∆t

Kd = eK∆t

(2.2)

(2.3)

2| Koopman Theory 19

Eigendecomposition If K is diagonalizable, one could take advantage of the eigende-
composition of the system in eq. (2.1). In fact, defining the vector of eigenfunctions as
φ(x(t)) = V −1ψ(x(t)), where V is the matrix that contains the right eigenvectors of K
in its columns, the evolution of the system is as follows:


φ(x(t)) = eΛφ(x(t0))

φ(x(t0)) = V −1ψ(x(t0))

ψ(x(t)) = Vφ(x(t))

(2.4)

with Λ denoting the diagonal matrix that contains the eigenvalues of the system; V −1 is
also the matrix of the left eigenvectors of K.

Reconstruction of the State It is often useful to obtain the evolution of a generic
function of the state ξ(x). This can be done by projecting the function onto the chosen
subspace, through the projection matrix P .

ξ(x) = Pψ(x)

If ξ(x) belongs to the subspace, it can be exactly reconstructed. In general P can be
obtained differently based on the used approach (section 2.2); furthermore, it is often
necessary to recover the original state and, if it is included in the basis functions, P can
be obtained trivially.

2.1.2. Controlled Systems

Consider the following system:

d

dt
x(t) = f(x(t),u(t)) (2.5)

where u ∈ Rm represents the control. In this case, the Koopman discrete operator and
infinitesimal generator can be parametrized by the control, therefore, a rather general
expression can be obtained [8].

Kd
uψ = ψ ◦ F(·,u)

Kuψ = ∇ψ · f(·,u)

In this form, no advantage is gained from the use of KOT, as the resulting system is gen-

20 2| Koopman Theory

erally nonlinear with respect to the control. However, the expression could be simplified
depending on the structure of the original dynamics.

Bilinear Form In the case of a control-affine dynamical system, the Koopman generator
is also control-affine [8].

f(x,u) = f0(x) +
N∑
i=1

ξi(u)fi(x) ⇒ Ku = K0 +
N∑
i=1

ξi(u)Ki (2.6)

where ξi is a scalar-valued function of the control and Ki is the Koopman generator
associated with the control-affine vector field fi. Consequently, for a finite Koopman-
invariant subspace associated with the free-dynamics part, one could write:

d

dt
ψ(x(t)) = K0ψ(x(t)) +

N∑
i=1

ξi(u(t))(Kiψ)(x(t)) (2.7)

If also Kiψ lies in the span of {ψ1, . . . , ψq}, the system becomes as in eq. (2.8) [49].
This hypothesis might be difficult to satisfy and, if it is not, eq. (2.7) might contain
nonlinearities even more complicated than the ones of the original system; nonetheless,
projecting Kiψ on the chosen subspace could still result in a good approximation.

d

dt
ψ(x(t)) = K0ψ(x(t)) +

N∑
i=1

ξi(u(t))Kiψ(x(t)) (2.8)

Furthermore, if ξi ≡ ui, the system becomes bilinear:

d

dt
ψ(x(t)) = K0ψ(x(t)) +

m∑
i=1

ui(t)Kiψ(x(t)) (2.9)

This hypothesis is easier to satisfy, as every dynamical system (eq. (2.5)) can be general-
ized to a control-affine system as in eq. (2.10) by inflating the control [50]. In this case,
ξi ≡ ūi with ūi being the rate of change of the original control ui.

d

dt
x̄(t) = f̄(x̄(t)) +

[
0n×m

Im×m

]
ū(t) (2.10)

with

2| Koopman Theory 21

f̄(x̄) :=

[
f(x̄)

0m×m

]
, x̄ :=

[
x

u

]

It must also be noted that, in general, it is possible to obtain a bilinear model only
for the Koopman generator and not for the Koopman operator; in fact, the exponential
relationship between the two makes the dependence on the control unclear in discrete-
time, even if the model is bilinear in continuous-time.
Moreover, when using the bilinear form, there may be no advantage in performing the
eigendecomposition, since the dynamics associated with the control might still be dense
and the state cannot be evaluated with a simple relationship with time as in eq. (2.4).

Linear Form The most interesting possibility is to obtain a Linear Time-Invariant
(LTI) system as in eq. (2.11), due to the possibility to apply optimization algorithms for
Linear Programs (LPs).

d

dt
ψ(x(t)) = K0ψ(x(t)) +Kcu(t) (2.11)

The conditions for the resulting system to be LTI are that the components of ψ span an
invariant subspace of the Koopman generator and that the original system is control-affine
with [8]


d

dt
x(t) = f0(x(t)) +

m∑
i=1

ui(t)fi(x(t))

∇ψi · fk(·,u) = const ∀i ∈ {1, . . . , n}, ∀k ∈ {1, . . . , q}

(2.12a)

(2.12b)

However, eq. (2.12b) is a quite restrictive condition and cannot be generalized to any
dynamical system and any Koopman-invariant subspace; adding the necessity to reobtain
the original state, either by including it in the subspace from the beginning or by projec-
tion, makes it very difficult to obtain a LTI system. Despite that, it is still worth trying
to explore some practical approximations that can give accurate enough results.
The relation between continuous and discrete matrices can be obtained similarly as in the
uncontrolled case [48], when the control is constant over a time step [48]:

[
K0 Kc

0m×q 0m×m

]
∆t = log

[
Kd

0 Kd
c

0m×q Im×m

]
(2.13)

22 2| Koopman Theory

2.2. Approaches

In recent years, many different methods to apply KOT emerged, both analytic and data-
driven. In this section, some of them are explored, showing their differences and strengths;
some other methods are only mentioned, since they are not useful in the context of this
work.

2.2.1. Galerkin Method

Galerkin method (GAL), widely used also in other branches of mathematics, consists in
projecting the Koopman generator onto a subspace defined by orthonormal basis func-
tions. The projection is obtained through the inner product operator ⟨·, ·⟩ [3].

⟨ξ1(x), ξ2(x)⟩ =
∫
Ω

ξ1(x)ξ2(x)wΩ(x)dx

where wΩ(x) and Ω are, respectively, the weighting function and domain of the subspace.
One common choice of basis functions are Legendre polynomials, with Ω = [−1, 1]n and
wΩ(x) = 1 (when the polynomials are normalized), due to the possibility to compute
the integrals in closed-form and iteratively if the original dynamics is polynomial [3]. It
must be noted that the number q of multivariable Legendre polynomials of maximum
degree deg, for a state of dimension n, is as follows, considering the combinations of the
single-variable polynomials [2]:

q =

(
deg + n

n

)
=

(deg + n)!

deg!n!

Therefore, for high-dimensional systems, the number of basis functions might be pro-
hibitive. For a control-affine system as in eq. (2.6), the approximation of the Koopman
matrices of eq. (2.8) can be computed, considering the dictionary functions ψ(x) [12].


K0,jk = ⟨∇ψj(x) · f0(x), ψk(x)⟩ =

∫
Ω

(∇ψj(x) · f0(x))ψk(x)w(x)dx

Ki,jk = ⟨∇ψj(x) · fi(x), ψk(x)⟩
(2.14)

The matrix P to reconstruct an observable vector ξ(x) can be built similarly [3].

Pi,j = ⟨ξi(x), ψj(x)⟩ =
∫
Ω

ξi(x)ψj(x)wΩ(x)dx

2| Koopman Theory 23

2.2.2. Extended Dynamic Mode Decomposition

In case there is no way to iteratively compute the integrals of eq. (2.14), or if there is no
closed-form solution, data-driven methods must be used. This is the case, for example,
when Legendre polynomials are used, but the original dynamics is not polynomial and it
is not straightforward to compute the Koopman matrices through integration.
Extended Dynamic Mode Decomposition (EDMD) aims at obtaining the Koopman op-
erator through minimization of the single-step prediction, in a convex fashion [4]. It
requires:

• a data set in the form of snapshot pairs from trajectories {(xi,yi)}Si=1;

• a dictionary of functions, represented by the vector-valued function ψ(x).

In particular, yi := F(xi), that is, yi is the state after a single-step propagation in time.
The points xi are randomly sampled in the domain or can be obtained by propagating
random initial conditions. It is also useful to define the matrices ψx and ψy that group
all the data:

ψx =
[
ψ(x1) ψ(x2) · · · ψ(xS)

]
, ψy =

[
ψ(y1) ψ(y2) · · · ψ(yS)

]
It must be noted that the method aims at approximating the Koopman operator, not the
generator, and that the resulting matrix is valid for the time step ∆t used to obtain the
snapshot pairs. In particular, the objective function that the method minimizes is:

J =
1

2

S∑
i=1

∣∣∣∣ψ(yi)−Kdψ(xi)
∣∣∣∣2 (2.15)

This is a least squares problem with the following solution:


Kd =

[
A†B

]T
A :=

1

S
ψxψ

T
x

B :=
1

S
ψxψ

T
y

(2.16)

where † denotes the pseudo-inverse. The Koopman generator can then be computed
according to eq. (2.2).
It has been proven that EDMD converges to GAL as the number of snapshot pairs tends to
infinity, if they are uniformly sampled in the domain, and, therefore, the solution obtained

24 2| Koopman Theory

with EDMD is equivalent to the one obtained by approximating Galerkin’s integrals with
Monte Carlo integration [4]. Other methods can be used to approximate the integrals, in
order to reduce the amount of data needed; for example, quadrature rules can be used
for multivariate integrals: in this case, xi are not randomly sampled, but they are precise
points in the domain, based on the selected quadrature rule [5].
Matrix P to reconstruct the observables ξ(x) can also be obtained by minimizing the
following cost function [51]:

J =
1

2

S∑
i=1

||ξ(xi)− Pψ(xi)||2

After building ξx = [ξ(x1), ξ(x2), . . . , ξ(xS)], the solution can be obtained similarly as
before:


P =

[
A†B

]T
A :=

1

S
ψxψ

T
x

B :=
1

S
ψxξ

T
x

In general, data does not have to be the same used to approximate the Koopman operator.

Extension to Include Control EDMD can be generalized in order to obtain models
that include the control. The data snapshots can be redefined as {(xi,yi,ui)}Si=1 with
yi := F(xi,ui). An additional set of functions is defined:

ξ(ψ(x),u) = [ξ1(ψ(x),u), . . . , ξN(ψ(x),u)]
T

The most common choice would obviously be ξi ≡ ui, in the prospective of a linear model.
The aim is to obtain the discrete-time system in eq. (2.17). However, the conditions such
that an exact model exists must be verified, even for a generic ψ.

ψ(xk+1) = Kd
0ψ(xk) +Kd

ξ ξ(ψ(xk),uk) =
[
Kd

0 Kd
ξ

] [ψ(xk)

ξ(ψ(xk),uk)

]
= C

[
ψ(xk)

ξ(ψ(xk),uk)

]

(2.17)

2| Koopman Theory 25

where matrices Kd
0 , Kd

ξ have been grouped in C.
After building the data matrix ξx,u = [ξ(ψ(x1),u1), . . . , ξ(ψ(xS),uS)], it is possible to
minimize a modified version of the cost function in eq. (2.15) [8]:

J =
1

2

S∑
i=1

∣∣∣∣∣
∣∣∣∣∣ψ(yi)− C

[
ψ(xk)

ξ(ψ(xk),uk)

]∣∣∣∣∣
∣∣∣∣∣
2

(2.18)

which can be minimized similarly as in eq. (2.16).



C =
[
A†B

]T
A :=

1

S

[
ψx

ξx,u

][
ψx

ξx,u

]T

B :=
1

S

[
ψx

ξx,u

]
ψT
y

(2.19)

Subsequently, Kd
0 and Kd

ξ can be extracted from C according to eq. (2.17). There is no
general way to transform the discrete-time system into a continuous one, unless ξi ≡ ui.
In that case the system becomes

d

dt
ψ(x(t)) = K0ψ(x(t)) +Kcu(t)

where the continuous matrices are obtained through eq. (2.13).

About the Bilinear Form One may be tempted to apply the method explained in
the last paragraph using the functions ψ(x)ui, in order to obtain a bilinear model similar
to eq. (2.9). However, as explained before, that model is valid only for a continuous-time
system, therefore, some changes must be applied to the last method.
The Koopman control matrices {Ki}mi=1 can be found after having computed the free-
dynamics part K0, with a selected subspace. The cost function is modified such that
residual is the one of the continuous-time system:

J =
1

2

S∑
i=1

∣∣∣∣∣
∣∣∣∣∣[ψ̇(xi,ui)−K0ψ(xi)

]
−

m∑
j=1

uj,iKjψ(xi)

∣∣∣∣∣
∣∣∣∣∣
2

=

=
1

2

S∑
i=1

∣∣∣∣∣∣[ψ̇(xi,ui)−K0ψ(xi)
]
− Cξ(ψ(xi),ui)

∣∣∣∣∣∣2
(2.20)

26 2| Koopman Theory

with

ψ̇(xi,ui) :=
d

dt
ψ(x(t))

∣∣∣∣
x=xi,u=ui

C := [KT
1 , . . . , K

T
m]

T

ξ(ψ(x),u) := [ψT (x)u1, . . . ,ψ
T (x)um]

T

After building ψ̇x = [ψ̇(x1), . . . , ψ̇(xS)] and ξx,u = [ξ(ψ(x1),u1), . . . , ξ(ψ(xS),uS)], the
matrix C that minimizes eq. (2.20) can be computed.


C =

[
A†B

]T
A :=

1

S
ξx,uξ

T
x,u

B :=
1

S
ξx,u

[
ψ̇x −K0ψx

]T (2.21)

It is pointed out that, in this case, the time derivative of the basis functions is needed: it
can be either approximated by finite-difference methods or computed analytically when
the expression of the functions is known. In the latter case, the time derivative requires
the knowledge of the basis functions’ Jacobian matrix:

d

dt
ψ(x(t)) = ∇ψ(x(t)) · f(x(t))

2.2.3. Dictionary Learning

Although EDMD is able to approximate the Koopman generator, the choice of a proper
dictionary of functions remains the main bottleneck of the method. The idea behind
EDMD with Dictionary Learning (dlEDMD) is to define the dictionary functions as the
output of a neural network and to learn them through training of the network itself [6].
The cost function to be minimized is similar to the EDMD case, but with the addition
of Tikhonov regularization, since the data matrices may not be well-posed now that the
dictionary functions are arbitrary. The central difference between the two methods is that
the problem now depends on both the Koopman matrix Kd and the network’s parameters
ω, such that the problem to be solved becomes:

(Kd,ω) = argmin
K̄d,ω̄

J(K̄d, ω̄) (2.22)

2| Koopman Theory 27

with

J =
1

2

S∑
i=1

∣∣∣∣ψ(yi,ω)−Kdψ(xi,ω)
∣∣∣∣2 + r

∣∣∣∣Kd
∣∣∣∣2
F

(2.23)

where r is the regularization parameter. This problem is no longer convex, but gradient
descent methods, widely used in Deep Learning contexts, can be implemented. In partic-
ular, following the work of Li et Al. [6], the optimization can be divided into two steps,
repeated until convergence:

1. fix ω and update Kd through eq. (2.16), taking care of including the regularization,
such that Kd = [(A+ rIq×q)

†B]T ;

2. fix Kd and train ω with gradient descent, minimizing the cost function of eq. (2.23).

Hereafter, a practical algorithm, similar to the one in the work mentioned above, is
reported.

Algorithm 2.1 dlEDMD optimization algorithm.

1: Initialize Kd, ω from a random distribution.
2: Initialize the iterations counter i = 0 and the epochs counter j = 0.
3: Set learning rate lr > 0, tolerance ε > 0, maximum number of iterations imax > 0,

number of epochs for iteration jmax > 0, regularizer 0 < r ≪ 1.
4: while J(Kd,ω) > ε and i < imax do
5: Kd ←

[
(A+ rIq×q)

†B
]T

6: for j = 1 : jmax do
7: ω ← ω − lr∇ωJ(Kd,ω)

8: end for
9: i← i+ 1

10: end while
11: Kd ←

[
[(A+ rIq×q)

†B
]T

In this work, a fully connected neural network was implemented, with variable hidden
layers number nh and hidden layers width wh, and with hyperbolic tangent as activation
function. If no constraints are imposed to the network output, the optimization process
would lead to the trivial solution ψ(x) ≡ 0, for which J ≡ 0 independently from Kd; for
this reason, a function that maps the input to a constant function and to the state itself
can be appended to the output by including a non-trainable layer.

28 2| Koopman Theory

The neural network scheme is reported in fig. 2.1. A complete investigation of other
architectures, to find an optimal one, is a subject of future research.

Figure 2.1: dlEDMD neural network scheme.

More explicitly, each layer is a function which receives the output of the previous layer
and forwards its output to the next layer. The first input is the state x and the last
output is the vector of dictionary functions ψ(x). The analytic expression is as follows:



z0(x) = l0(x) = W0x+ p0

zj(x) = hj(zj−1(x)) = zj−1(x) + tanh (Wjzj−1(x) + pj) ∀j ∈ {1, . . . , nh}

zf (x) = lf (znh
(x)) = Wfznh

(x) + pf

ψ(x) =
[
const xT zTf (x)

]T

(2.24a)

(2.24b)

(2.24c)

(2.24d)

where W0 ∈ Rwh×n, p0 ∈ Rwh , Wj ∈ Rwh×wh , pj ∈ Rwh , Wf ∈ Rq×wh , pf ∈ Rq are the
weight matrices and bias vectors and they all depend on ω; the hyperbolic tangent is
the activation function that introduces the nonlinearity in the network and it is applied
element-wise; the constant value can be selected based on the order of magnitude of the

2| Koopman Theory 29

data: for example, when it is normalized, const = 1 might be a good choice.
In order to include the control, the same approaches used for EDMD can be followed:

• modify the cost function in eq. (2.23) by including functions of the control (see
eq. (2.18));

• apply dlEDMD without control and consequently obtain the bilinear model by min-
imizing eq. (2.20).

In this context, the first option would be a viable solution to obtain a linear control model,
given the fact that the basis functions are specifically optimized towards the desired model.
In this work, the dlEDMD algorithm has been modified to implement this functionality.
The Jacobian matrix of the neural network function with respect to the state, ∇ψ(x), is
derived in appendix A, as it is useful to compute the time derivative of the basis functions
and minimize eq. (2.20).

2.2.4. Comparison

Given the possibility to learn the optimal dictionary of functions, dlEDMD can achieve
higher accuracy than GAL and EDMD. Table 2.1 summarizes the advantages and disad-
vantages of the three methods. In general, it may be useful to explore GAL and EDMD,
to check if they are accurate enough on the dynamics under study, before spending time
in the setup and training of a neural network.

2.2.5. Truncated Singular Value Decomposition

The previously discussed methods, even if they manage to approximate the original dy-
namics with good accuracy, can result in very high-dimensional systems which might not
be useful for practical applications. Moreover, in the case of dlEDMD, some observables
might be redundant if no additional constraints are imposed; not only this increases the
model dimension in vain, but can also result in the ill-posedness of the matrices. In this
context, it is useful to apply the theory behind Singular Value Decomposition (SVD).
The SVD is a unique matrix decomposition and it exists for every matrix A ∈ Rn×S [52]:

A = UΣΣV
T
Σ

In particular, UΣ ∈ Cn×n and VΣ ∈ CS×m contain in the columns the left and right
singular vectors, respectively; Σ ∈ Rn×S is a rectangular diagonal matrix with entries
called singular values, ordered from the largest one to the smallest one. The method is

30 2| Koopman Theory

Method Pros Cons

GAL • Analytic computa-
tion possible...

• ...only for specific dy-
namics and basis func-
tions

EDMD • Always applicable • Fixed basis functions
• Accuracy dependent on

amount of data

dlEDMD • No need to choose
basis functions

• Accuracy dependent on
amount of data

• Might need long train-
ing

• Accuracy can be influ-
enced by network archi-
tecture

Table 2.1: Comparison of Koopman approaches.

a generalization of eigendecomposition to rectangular matrices and it can have a precise
physical meaning, depending on the case of application. For example, consider the data
matrix:

A =
[
x1 x2 · · · xS

]
which is the collection of S measurements of the n-dimensional state x. At best, n singular
values can be found, in the likely case that S ≫ n; therefore, the state can be expressed
in a new basis defined by the singular values and the left singular vectors, while its S-th
value is recovered through the S-th right singular vector.
The rank of A is defined by the number of non-zero singular values and the smaller is a
singular value, the lower is its influence on the system: this means that the dimensionality
of A can be reduced by eliminating the null singular values (without further approxima-
tion) or the less important ones (introducing more or less approximation). For the second
option, an energy approach can be followed [52]: the total energy E and the cumulative
energy associated with the N -th singular value EN are defined as in eqs. (2.25) and (2.26);
the matrix is truncated at the first singular value whose cumulative energy is the same as

2| Koopman Theory 31

the total energy, within a selected tolerance.

E =
n∑

i=1

Σ2
i

EN =
N∑
i=1

Σ2
i

(2.25)

(2.26)

Considering the data matrix ψx, this method can be applied to EDMD and derived
methods: before computing the uncontrolled matrix [53], before computing the control
matrix or after computing all the matrices. In the latter case, the matrices are transformed
according to eq. (2.27), where the barred Koopman matrices are the truncated ones and
UΣ,N is the matrix of the left singular vectors truncated at the N -th value; a practical
algorithm is reported in algorithm 2.2.


K̄0 = UT

Σ,NK0UΣ,N

K̄i = UT
Σ,NKiUΣ,N

K̄c = UT
Σ,NKcUΣ,N

(2.27)

Algorithm 2.2 Truncated SVD algorithm.
1: Load the data matrix ψx (for example from uncontrolled trajectories).
2: Set the tolerance value 0 ≤ ε ≤ 1.
3: [UΣ,Σ, V Σ] = svd(ψx)

4: E =
∑n

i=1Σ
2
i

5: Initialize the cumulative energy EN = 0 and the counter i = 1

6: while 1− EN

E
> ε do

7: EN ← EN + Σ2
i

8: i← i+ 1

9: end while
10: N ← i− 1

11: UΣ,N ← UΣ(1 : N)

12: Compute the Koopman matrices according to eq. (2.27)

2.2.6. Other Methods

The Koopman literature consists of many other methods that can be very useful, depend-
ing on the context. Some of them, while not used in this work, are still worth of mention;

32 2| Koopman Theory

for a comprehensive list of Koopman approaches for vehicular applications, divided for
scientific field, refer to the work of Manzoor et Al. [54].

EDMD with Quadrature Hofmann et Al. [5] suggested using EDMD with a quadra-
ture rule (qEDMD) for multivariate integration. In this way, the number of snapshot
pairs needed to achieve a certain accuracy can be reduced. In fact, using Monte Carlo
integration, with uniformly distributed random points, would result in a slower rate of
convergence, the higher the dimension of the original problem.

EDMD for Koopman Generator EDMD can be modified to directly approximate
the Koopman generator (gEDMD) by including the time derivative of the basis functions
in the cost function [55]. Equation (2.20) derives from this idea.

Sparse Identification of Nonlinear Dynamical Systems Brunton et Al. [56] aimed
at identifying a dynamical system from data by imposing sparsity: gEDMD was modified
by adding a L1 regularization term to the regression. There are many works in which this
algorithm was used to obtain the Koopman generator. It can be useful in some contexts,
when a sparse Koopman model is expected.

Optimal Construction of Koopman Eigenfunctions Korda et Mezić [50] showed
that it is possible to build a Koopman eigenfunction on an arbitrary eigenvalue, provided
that some conditions are met. Their algorithm is able to find a set of eigenvalues that is
accurate enough on a set of trajectories data. Eigenfunctions can be extended to all the
domain through interpolation. It must be pointed out that:

• the hypothesis for its application might not always be satisfied;

• the optimization problem is non-convex;

• the interpolation can be challenging to perform, for high dimensional systems.

2.3. Motivating Examples

The aforementioned methods are applied to some examples to show in which cases they
perform well and in which ones they fail to give a good model. The first example is a 2

Degrees of Freedom (DoFs) system with a quadratic nonlinearity for which a Koopman-
invariant subspace that includes the original state exists; the second and third examples
are two different variations of the Duffing oscillator, which is a 2 DoFs system with
polynomial nonlinearities; the last example is a non-polynomial system and, therefore,

2| Koopman Theory 33

analytic GAL with Legendre polynomials cannot be applied straightforwardly. All the
dynamical systems in this section are considered with a generic time unit TU and state
unit SU. Moreover, the neural network architecture is fixed in this section, with nh = 3,
wh = 100 and const = 1.
The error εT associated with a trajectory of time duration T is obtained in the following
way (see also eq. (2.28)):

1. the initial condition is propagated with the original model to obtain x(t);

2. the propagation is performed also with the Koopman model to obtain ψ(t) and
consequently x̄(t) = Pψ(t);

3. the norm of the absolute error vector is computed;

4. its maximum value along the time duration is the state reconstruction error of the
trajectory.

εT = argmax
t∈[0,T]

√√√√ n∑
j=1

(x̄j(t)− xj(t))2 (2.28)

Furthermore, a Monte Carlo campaign can be performed on a set of trajectories, with
uniform random initial conditions in [−1, 1]2 SU, to approximate the mean reconstruction
error and its standard deviation.

2.3.1. Closed System

Consider the dynamical system in eq. (2.29) and the vector of basis functions ψ(x) =

[x1, x2, x
2
1, x1x2, x

3
1]

T .

d

dt
x(t) =

d

dt

[
x1(t)

x2(t)

]
=

 − 1

10
x1(t)

x21(t)− x2(t)

 (2.29)

It can be rewritten by augmenting the state and making use of ψ(x) [47]:

d

dt
ψ(x(t)) =


−0.1 0 0 0 0

0 −1.0 1.0 0 0

0 0 −0.2 0 0

0 0 0 −1.1 1.0

0 0 0 0 −0.3

ψ(x(t)) = Kψ(x(t))

34 2| Koopman Theory

It is an exact Koopman system with the Koopman generator matrix K, since the subspace
spanned by the observables in ψ is Koopman-invariant. If, however, other polynomials
are added to the basis functions, the system gets polluted by a bias term. For example,
using ψ(x) = [x1, x2, x

2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2]

T :

d

dt
ψ(x(t)) = Aψ(x(t)) + a(x(t))

with

A =



−0.1 0 0 0 0 0 0 0 0

0 −1.0 1.0 0 0 0 0 0 0

0 0 −0.2 0 0 0 0 0 0

0 0 0 −1.1 1.0 0 0 0 0

0 0 0 0 −2.0 0 2.0 0 0

0 0 0 0 0 −0.3 0 0 0

0 0 0 0 0 0 −1.2 0 0

0 0 0 0 0 0 0 −2.1 0

0 0 0 0 0 0 0 0 −3.0


, a(x) =



0

0

0

0

0

x41

2x31x2

3x21x
2
2



In this form, it is obviously not a Koopman system, due to the presence of the bias vector
a(x). In order to obtain the Koopman matrix, the higher-order polynomials must be
projected onto ψ(x); this generates spurious pairs of eigenfunctions and eigenvalues, that
is, the eigenfunctions evolution is not well-approximated by the eigenvalues. However,
the dynamics associated with the original state is not influenced, since it belongs to an
exact Koopman-invariant subspace, and the reconstruction error remains zero.
This behavior can be observed when using the GAL and EDMD methods with Legendre
multivariate polynomials up to order 3. In order to obtain data for EDMD, uniformly
random initial conditions were generated within the range [−1, 1]2 SU and propagated
for 1 TU. Data was sampled with time step ∆t = 0.1 TU, resulting in a total number of
snapshot pairs S = # initial conditions · 10. When GAL is used, the Koopman generator
is approximated by the following matrix:

2| Koopman Theory 35

KGAL =



0 0 0 0 0 0 0 0 0 0

0 −0.10 0 0 0 0 0 0 0 0

0.58 0 −1.00 0.52 0 0 0 0 0 0

−0.22 0 0 −0.20 0 0 0 0 0 0

0 1.04 0 0 −1.10 0 0.45 0 0 0

−2.24 0 1.29 0 0 −2.00 0 1.15 0 0

0 −0.46 0 0 0 0 −0.30 0 0 0

0.52 0 −0.22 0.91 0 0 0 −1.20 0 0

0 −2.24 0 0 2.33 0 0 0 −2.10 0

0.88 0 −4.58 0.79 0 1.97 0 0 0 −3.00


When EDMD and dlEDMD are used, with the same number of basis functions and with
enough data, the resulting Koopman matrices have the sparsity pattern represented in
fig. 2.2. It can be seen that EDMD is very similar to GAL for the first 7 observables,
while dlEDMD does not have any non-zero elements, as the basis functions are different
and obtained numerically through neural network optimization.

0 2 4 6 8 10

0

2

4

6

8

10

(a) EDMD.

0 2 4 6 8 10

0

2

4

6

8

10

(b) dlEDMD.

Figure 2.2: Closed system Koopman sparsity pattern.

In fig. 2.3 an example evolution of the eigenfunctions coming from GAL and dlEDMD is
shown. The first 6 eigenfunctions are exact, as expected, for both methods; the others are
not well-approximated by GAL, whereas they are approximated as constant and equal to
zero by dlEDMD. In fact, dlEDMD has no incentive in finding other eigenfunctions, since
the zero function can be perfectly propagated by any Koopman matrix; it only optimizes
the eigenfunctions needed to propagate the original state.

36 2| Koopman Theory

0 0.5 1 1.5 2

Time [TU]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

E
ig

e
n
fu

n
c
ti
o
n
s
 [
S

U
]

True

Predicted

(a) GAL first six eigenvalues.

0 0.5 1 1.5 2

Time [TU]

-0.5

0

0.5

E
ig

e
n
fu

n
c
ti
o
n
s
 [
S

U
]

True

Predicted

(b) GAL last four eigenvalues.

0 0.5 1 1.5 2

Time [TU]

-1.5

-1

-0.5

0

0.5

1

1.5

E
ig

e
n
fu

n
c
ti
o
n
s
 [
S

U
]

True

Predicted

(c) EDMD first six eigenvalues.

0 0.5 1 1.5 2

Time [TU]

-0.4

-0.2

0

0.2

0.4

0.6

E
ig

e
n
fu

n
c
ti
o
n
s
 [
S

U
]

True

Predicted

(d) EDMD last four eigenvalues.

0 0.5 1 1.5 2

Time [TU]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

E
ig

e
n
fu

n
c
ti
o
n
s
 [
S

U
] True

Predicted

(e) dlEDMD first six eigenvalues.

0 0.5 1 1.5 2

Time [TU]

-0.5

0

0.5

E
ig

e
n
fu

n
c
ti
o
n
s
 [
S

U
]

True

Predicted

(f) dlEDMD last four eigenvalues.

Figure 2.3: Closed system Koopman eigenfunctions evolution example.

Figure 2.4 shows the results of the Monte Carlo campaign for GAL and EDMD, for
T = 2 TU and T = 10 TU: the EDMD error converges to the GAL one as S increases
and, at convergence, the two methods have a numerically negligible error on the state;

2| Koopman Theory 37

furthermore, the error does not depend on the propagation time.

200 400 600 800 1000

Number of samples

10
-10

10
-9

10
-8

S
ta

te
 e

rr
o
r

[S
U

]

GAL

EDMD

(a) Propagation time: 2 TU.

200 400 600 800 1000

Number of samples

10
-9

10
-8

S
ta

te
 e

rr
o
r

[S
U

]

GAL

EDMD

(b) Propagation time: 10 TU.

Figure 2.4: Closed system mean error over 100 trajectories.

2.3.2. Asymptotically Stable Duffing Oscillator

Consider the Duffing oscillator’s dynamical system in eq. (2.30) [6], with one unstable
equilibrium point in [0, 0]T SU and two asymptotically stable equilibrium points in [±1, 0]T

SU.

d

dt
x(t) =

d

dt

[
x1(t)

x2(t)

]
=

 x2(t)

x1(t)− x31(t)−
1

2
x2(t)

 (2.30)

Since the system is polynomial, EDMD is not applied, as it converges to GAL. The per-
formances of the other two methods are evaluated for different numbers of basis functions;
in particular, for GAL the degree of the Legendre polynomials is increased and the as-
sociated number of functions is used for dlEDMD. Data for dlEDMD was obtained by
propagating 100 random initial conditions in the range [−1, 1]2 SU for 10 TU and sam-
pling with ∆t = 0.1 TU.
Figure 2.5 shows how the state reconstruction error changes depending on the propaga-
tion time T and the number of basis functions. One would expect the error to always
decrease as more basis functions are used, but this is the case only for dlEDMD. For a
longer propagation time, GAL performs worse when new functions are introduced because
they change the Koopman spectrum; even if the single-step prediction is better, the new,
spurious eigenvalues are highly divergent (fig. 2.6). This is due to the fact that no exact
Koopman-invariant subspace can be found and, therefore, when new basis functions are

38 2| Koopman Theory

added, they have an influence on the dynamics of the old ones. In this case, they make the
dynamics more unstable. On the other hand, dlEDMD is able to find a better subspace
that results in a model more accurate than the GAL one: no divergence behavior can be
observed, but, however, the improvement in accuracy with the number of basis functions
is modest. An example trajectory can be seen in fig. 2.7.

10 15 20 25 30 35 40

Number of basis functions

0.1

0.2

0.3

0.4

0.5

0.6

S
ta

te
 e

rr
o
r

[S
U

]

GAL

dlEDMD

(a) Propagation time: 2 TU.

10 15 20 25 30 35 40

Number of basis functions

0

5

10

15

20

25

S
ta

te
 e

rr
o
r

[S
U

]

GAL

dlEDMD

(b) Propagation time: 4 TU.

Figure 2.5: Asymptotically stable Duffing oscillator mean error over 100 trajectories.

-6 -4 -2 0 2 4

Real part

-4

-2

0

2

4

Im
a
g
in

a
ry

 p
a
rt

q = 36

q = 21

q = 10

(a) GAL.

-250 -200 -150 -100 -50 0

Real part

-3

-2

-1

0

1

2

3

Im
a
g
in

a
ry

 p
a
rt

q = 36

q = 21

q = 10

(b) dlEDMD.

Figure 2.6: Asymptotically stable Duffing oscillator eigenvalues.

2| Koopman Theory 39

0 1 2 3 4

Time [TU]

-1.5

-1

-0.5

0

0.5

x
1
 [
S

U
]

True

GAL

dlEDMD

(a)

0 1 2 3 4

Time [TU]

-1

-0.5

0

0.5

1

x
2
 [
S

U
]

True

GAL

dlEDMD

(b)

Figure 2.7: Asymptotically stable Duffing oscillator example trajectory, 36 basis functions.

2.3.3. Stable Duffing Oscillator

Consider the Duffing oscillator’s dynamical system in eq. (2.31) with one stable equilib-
rium point in [0, 0]T SU. It is the same example used in [3], but with a higher coefficient
for the cubic term.

d

dt
x(t) =

d

dt

[
x1(t)

x2(t)

]
=

[
x2(t)

−x1(t)− x31(t)

]
(2.31)

10 15 20 25 30 35 40

Number of basis functions

0

0.005

0.01

0.015

0.02

0.025

0.03

S
ta

te
 e

rr
o
r

[S
U

]

GAL

dlEDMD

(a) Propagation time: 2 TU.

10 15 20 25 30 35 40

Number of basis functions

0

0.02

0.04

0.06

0.08

S
ta

te
 e

rr
o
r

[S
U

]

GAL

dlEDMD

(b) Propagation time: 4 TU.

Figure 2.8: Stable Duffing oscillator mean error over 100 trajectories.

Also in this case, GAL and dlEDMD (with the same number of samples as in the previous
case) are used. In fig. 2.8 it can be observed that, differently from before, the error does not

40 2| Koopman Theory

increase when higher-order polynomials are used for GAL. On the contrary, the accuracy
improvement for dlEDMD is much more modest than it is for GAL. The eigenvalues in
fig. 2.9 show that new, stable modes are introduced in the system, but they are wrong,
as they do not appear in the oscillatory behavior of the original dynamics or, at least,
not with that magnitude. In fig. 2.10 an example trajectory of duration 80 TU shows
how these new frequencies appear when the model is propagated for longer times; the
dlEDMD model, instead, manifests a damped behavior.

-1 -0.5 0 0.5 1 1.5

Real part 10
-15

-10

-5

0

5

10

Im
a
g
in

a
ry

 p
a
rt

q = 36

q = 21

q = 10

(a) GAL.

-200 -150 -100 -50 0

Real part

-10

-5

0

5

10

Im
a
g
in

a
ry

 p
a
rt

q = 36

q = 21

q = 10

(b) dlEDMD.

Figure 2.9: Stable Duffing oscillator eigenvalues.

0 20 40 60 80

Time [TU]

-3

-2

-1

0

1

2

3

x
1
 [
S

U
]

True

GAL

dlEDMD

(a)

0 20 40 60 80

Time [TU]

-3

-2

-1

0

1

2

3

x
2
 [
S

U
]

True

GAL

dlEDMD

(b)

Figure 2.10: Stable Duffing oscillator example trajectory, 36 basis functions.

2.3.4. Non-polynomial System

Consider the non-polynomial and control-affine dynamical system in eq. (2.32), a modified
version of the example in [7]. Analytic GAL with Legendre polynomials cannot be used

2| Koopman Theory 41

in this case (at least not in a straightforward way), so, instead, EDMD is applied and
compared with dlEDMD.

d

dt
x(t) =

d

dt

[
x1(t)

x2(t)

]
=

 x2(t)

−0.3 sinx1(t) +
1

100
x2(t) + u(t)

 (2.32)

Free-dynamics Model First of all, the uncontrolled dynamics is approximated: 100

uniformly random initial conditions were generated in the range [−1, 1]2 SU and prop-
agated for 10 TU. Data was sampled with time step ∆t = 0.1 TU, resulting in a total
number of snapshot pairs S = 10000.
Figure 2.11 shows the state error for the two methods as more basis functions are used,
and for different propagation times; in figs. 2.12 and 2.13 it can be seen that the spectrum
approximated by EDMD gets polluted as the number of basis functions increases, making
the dynamics unstable.

10 15 20 25 30 35 40

Number of basis functions

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

S
ta

te
 e

rr
o
r

[S
U

]

EDMD

dlEDMD

(a) Propagation time: 2 TU.

10 15 20 25 30 35 40

Number of basis functions

0

0.2

0.4

0.6

0.8

1

S
ta

te
 e

rr
o
r

[S
U

]

EDMD

dlEDMD

(b) Propagation time: 5 TU.

Figure 2.11: Uncontrolled non-polynomial system mean error over 100 trajectories.

42 2| Koopman Theory

0 0.5 1 1.5 2

Real part

-3

-2

-1

0

1

2

3

Im
a
g
in

a
ry

 p
a
rt

q = 36

q = 21

q = 10

(a) EDMD.

-150 -100 -50 0

Real part

-1.5

-1

-0.5

0

0.5

1

1.5

Im
a
g
in

a
ry

 p
a
rt

q = 36

q = 21

q = 10

(b) dlEDMD.

Figure 2.12: Non-polynomial system eigenvalues.

0 1 2 3 4 5

Time [TU]

-1.5

-1

-0.5

0

0.5

x
1
 [
S

U
]

True

Edmd

dlEDMD

(a)

0 1 2 3 4 5

Time [TU]

-1

-0.5

0

0.5

1

x
2
 [
S

U
]

True

Edmd

dlEDMD

(b)

Figure 2.13: Uncontrolled non-polynomial system example trajectory, 36 basis functions.

Bilinear Control Model By solving eq. (2.21), the control is introduced in bilinear
form. The free-dynamics Koopman model with 10 basis functions is employed since it
has the best performance between the EDMD models obtained. New 100 trajectories
were generated by using random piecewise-constant control in [−1, 1] SU/TU with time
duration in [1, 10] TU. To avoid having unbounded data, which could happen when in-
troducing random control in the system, only trajectories with state in [−1, 1]2 SU were
used. The resulting system was tested on 100 trajectories of duration 5 TU; the results
are shown in fig. 2.14, where it can be observed that the performance is consistent with
the one of the uncontrolled system; an example trajectory is shown in fig. 2.15.

2| Koopman Theory 43

Figure 2.14: Bilinear control non-polynomial system error, T = 5 TU, 10 basis functions.
EDMD mean 0.33 SU, dlEDMD mean 0.26 SU.

0 1 2 3 4 5

Time [TU]

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
1
 [
S

U
]

True

Edmd

dlEDMD

(a)

0 1 2 3 4 5

Time [TU]

-1.5

-1

-0.5

0

0.5

1

x
2
 [
S

U
]

True

Edmd

dlEDMD

(b)

0 1 2 3 4 5

Time [TU])

-1

-0.5

0

0.5

1

C
o
n
tr

o
l
[S

U
/T

U
]

(c)

Figure 2.15: Bilinear control non-polynomial system example trajectory, 10 basis func-
tions.

44 2| Koopman Theory

It must be pointed out that, for Legendre polynomials, Kiψ lies in the span of {ψ1, . . . , ψq}
(see eq. (2.7)), while this is not true in general for dlEDMD, especially with hyperbolic
tangent as activation function; however, the learned subspace is large enough that the
projection of controlled dynamics is still accurate.

Linear Control Model The control is introduced linearly with EDMD by solving
eq. (2.19), with linear functions of the control and with data obtained in a similar way
as for the bilinear model; the cost function in dlEDMD is modified accordingly. The
condition in eq. (2.12b) requires that Kiψ lies in the span of the constant function, but
this is not satisfied by either of the methods. Practically, they get the best approximation
possible by projecting the Koopman generator associated with the control onto the span
of the constant function.
The crucial difference between the two methods is that EDMD has a fixed dictionary
(Legendre polynomials); dlEDMD, on the other hand, optimizes its dictionary in order
to have the best result. This can be seen in figs. 2.16 and 2.17 where dlEDMD shows a
smaller error than EDMD, and comparable with the previous models.

Figure 2.16: Linear control non-polynomial system error, T = 5 TU, 10 basis functions.
EDMD mean 0.47 SU, dlEDMD mean 0.24 SU.

2| Koopman Theory 45

0 1 2 3 4 5

Time [TU]

-0.8

-0.6

-0.4

-0.2

0

0.2

x
1
 [
S

U
]

True

Edmd

dlEDMD

(a)

0 1 2 3 4 5

Time [TU]

-1

-0.5

0

0.5

1

x
2
 [
S

U
]

True

Edmd

dlEDMD

(b)

0 1 2 3 4 5

Time [TU])

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

C
o
n
tr

o
l
[S

U
/T

U
]

(c)

Figure 2.17: Linear control non-polynomial system example trajectory, 10 basis functions.

Truncated Singular Value Decomposition The dlEDMD dictionary is analyzed to
check whether a truncated SVD is viable or not. The decomposition was applied to the
data matrix used to obtain the free-dynamics Koopman matrix; the singular values and
their cumulative energy residual are represented in fig. 2.18. With a tolerance of 10−6,
the resulting matrix can be truncated at the eighth singular value. The new system is
approximated by following the steps in algorithm 2.2 and the resulting accuracy can be
observed in fig. 2.19. Interestingly, the performance of the system is not influenced by the
truncation which, on the other hand, reduces the dimension of the system and improves
the conditioning of the matrices. Without the truncation the reciprocal of the condition
of K in 1-norm is 2.6× 10−8; with the truncation it is 1.5× 10−6.

46 2| Koopman Theory

0 10 20 30 40

Singular value index

10
-5

10
0

S
in

g
u
la

r
v
a
lu

e

(a) Singular values.

0 10 20 30 40

Singular value index

10
-15

10
-10

10
-5

10
0

C
u
m

u
la

ti
v
e
 e

n
e
rg

y
 r

e
s
id

u
a
l

Tolerance

(b) Cumulative energy error.

Figure 2.18: Non-polynomial system truncated SVD analysis, dlEDMD.

Figure 2.19: Uncontrolled non-polynomial system after truncated SVD error, T = 5 TU,
8 basis functions. dlEDMD mean 0.09 SU.

47

3| Rocket Landing

This chapter sets out the rocket landing problem of interest: section 3.1 describes the
mission scenario and the rocket properties, which are useful to understand the equations
of motion in section 3.2; in sections 3.3 and 3.4 the OCPs are formulated and a Koopman-
based LP is built from scratch.

3.1. Environment Modeling

The scenario involves a fuel-optimal rocket landing on the Mars’ surface [23]. The at-
mosphere is considered, resulting in an aerodynamic force acting on the vehicle. The
rocket must reach the target on the ground with zero velocity, while its mass decreases
throughout the mission as a result of propellant expulsion.
It is useful to define three reference frames, also represented in fig. 3.1:

• an inertial, target-fixed reference frame e with its components locally defined, in
order, as the Up, East and North directions;

• a non-inertial, body-fixed frame b with its first direction pointing from the engine
to the tip and the other two components defined perpendicularly to the first one,
according to the rotation matrix in eq. (3.3);

• a non-inertial, wind-fixed frame w with the direction of the rocket velocity relative
to the inertial frame as its first component (no gusts are considered) and the other
two defined perpendicularly to it, according to the rotation matrix in eq. (3.1).

The first reference frame is target-centered and can be considered inertial due to the short
time of flight; the other two reference frames are body-centered; the Mars’ curvature is
neglected so that the altitude does not change with the horizontal position and the gravity
can always be defined as aligned with the -Up direction. The i-th component of reference
frame j, expressed in reference frame k, is denoted as ĵi,k. The transformation of a vector
from frame i to frame j can be expressed by the Direction Cosine Matrix (DCM) Rj

i :
aj = Rj

iai. The expression of the DCMs associated with the three reference frames is
given in eqs. (3.1) to (3.3), where sδ and cδ stand for sin δ and cos δ, respectively [23].

48 3| Rocket Landing

Figure 3.1: Rocket landing reference frames.

Re
w =


cγvcχv −sχvcγv −sγv

sχv cχv 0

sγvcχv −sγvsχv cγv

 =
[
ŵ1,e ŵ2,e ŵ3,e

]

Rw
b =


cαcβ sβ sαcβ

sκsα − cκcαsβ cκcβ −cκsαsβ − cαsκ

−cαsκsβ − cκsα cβsκ cκcα − sκsβsα

 =
[
b̂1,w b̂2,w b̂3,w

]

Re
b =


cνcθ −cνsθsζ − cζsν sνsζ − cνcζsθ

cθsν cνcζ − sνsθsζ −cζsνsθ − cνsζ

sθ cθsζ cθcζ

 =
[
b̂1,e b̂2,e b̂3,e

]
= Re

wR
w
b

(3.1)

(3.2)

(3.3)

3| Rocket Landing 49

In particular, ν, θ and ζ are, respectively, the yaw, pitch and roll angles that describe
the rocket attitude with respect to the inertial frame (attitude angles). The aerodynamic
angles α, β and κ are the angle of attack, the sideslip angle and the bank angle, respec-
tively; they are important because they influence the aerodynamic force, and, for it to
be defined, the angle of attack is bounded in the range [150, 210]◦ and the sideslip angle
in the range [−30, 30]◦. To describe the transformation from wind to inertial frame, the
vertical flight-path angle γv and the vertical azimuth angle χv are used [23]. They differ
from the heritage flight path angle and azimuth angle which are usually applied in hori-
zontal flight dynamics; in fact, they reach a singularity in vertical flight condition, when
the azimuth angle varies a lot for small variations in the components of the horizontal
velocity. The new angles are meant to work best for rocket landing applications and are
defined as follows:

γv = tan−1

(
v3,e
v1,e

)
, χv = tan−1

 v2,e√
v21,e + v23,e

 (3.4)

where vi,e is the i-th component of the wind velocity vector in the inertial frame. Further-
more, the inverse tangent function has a unique value on the four quadrants, taking care
of the signs of the numerator and denominator of the argument. A visual representation
can be seen in fig. 3.2. Defining with iδ a right-hand rotation of δ about the i-th axis, it is
possible to obtain a new reference frame with a sequence of rotations about the intrinsic
axes (Euler angles). The rocket attitude is obtained with the sequence 3ν2−θ1ζ ; the wind
frame from the inertial frame with with the sequence 2−γv3χv ; the wind frame with respect
to the body with the sequence 2−α3β1−κ.

(a) Attitude angles. (b) Wind angles. (c) Aerodynamic angles.

Figure 3.2: Rocket landing angles representation. For simplicity, only the resulting first
axis is represented.

50 3| Rocket Landing

When ν, ζ and v2,e are equal to zero, i.e. in the 2D motion in the 1− 3 plane, the sideslip
and bank angles admit two values: β = κ = aπ for a = 0, 1. Consequently, also the angle
of attack can have two values which differ by 180◦. This means that the same attitude
with respect to the wind can be obtained with two different sets of consecutive rotations.
However, given the bounds on the aerodynamic angles defined before, the sideslip angle
is considered equal to zero. The values of the aerodynamic angles in the planar motion
are highlighted in eq. (3.5). The demonstration is given in appendix B. As expected, the
body frame is obtained by a positive rotation of γv about the second axis, followed by a
negative rotation about θ about the same axis.


α = γv − θ

β = 0

κ = 0

(3.5)

The rocket is subjected to three forces: gravity, thrust and aerodynamic force. In this
work, the gravity acceleration magnitude g is considered constant:

ge =
[
−g 0 0

]T
The propulsive force depends on the throttle value η, for a given maximum thrust Γmax,
and its direction is the first body axis:

FP
e = ηΓmaxb̂1,e

The aerodynamic force depends on the rocket velocity and its magnitude ||ve||, on the
atmospheric density ρ and on the rocket attitude with respect to the wind:

FA
e =

1

2
ρ||ve||2

[
Re

b(G1b̂1,b +G2b̂2,b +G3b̂3,b)
]

It is denoted with Gi the aerodynamic coefficient in the i-th body direction that varies
based on α, β, κ and the Mach number [23]. Furthermore, the Mars atmospheric model is
exponential and it depends on the altitude r1 (the first component of the position vector
in the inertial frame) [57]:

ρ(h) = ρ0e
−
r1
R , Vs = const

3| Rocket Landing 51

where ρ0 is the reference density, R the reference altitude, Vs the speed of sound. The
mass flow rate of the system depends on the throttle value:

ṁ = −ηΓmax

Vex

where Vex is the exhaust velocity of the engine. To the aim of keeping the model relatively
simple, the complexity of a full 6 DoFs model is avoided since it would require the mod-
eling of the rotational dynamics; instead, the attitude is considered as an external input.
Moreover, it can be noted that, except for the aerodynamic force, all the other terms do
not depend on the aerodynamic angles and only the first body vector is needed from the
rocket attitude information. For this reason two sets of controls can be defined:

u =
[
η ν θ ζ

]T
or u =

[
η b̂1,e

]T
The first one is more general and can be always used; the second set can be useful when
the aerodynamic term is not considered, taking care of constraining the body vector to
have unity norm. In the second case, all the dynamics is polynomial and GAL can be
applied. In contrast to [23], where the aerodynamic angles are used as DoFs, the attitude
angles are used in this work, preventing the singularity that occurs when the velocity
becomes zero. In fact, the rocket attitude must be recovered to define the direction of the
forces with respect to the inertial frame, but to obtain it from the aerodynamic angles,
the wind angles, which are not defined for null velocity (eq. (3.4)), must be known.

3.2. Equations of Motion

In this section, the equations of motion are derived; to simplify the notation, vectors with-
out subscript are considered as expressed in the inertial reference frame. Three different
formulations are presented, but, in order to keep a similar shape between them, some
common choices are made. The 3D dynamics of the rocket can be fully represented by
the position vector r, the velocity vector v and the mass m, such that the state can be
grouped in the vector x = [r,v,m]T and the differential equations read as follows, with
the selected control vector u:

52 3| Rocket Landing

d

dt
x(t) =


v(t)

g +
FP (x(t),u(t))

m(t)
+

FA(x(t),u(t))

m(t)

−η(t)Γmax

Vex


Mass Reciprocal A new variable is introduced: mr = 1/m. Its dynamics can be
derived, knowing the expression of the mass flow rate:

d

dt
mr(t) =

d

dt

(
1

m(t)

)
= − 1

m2(t)

d

dt
m(t) = −m2

r(t)

(
−η(t)Γmax

Vex

)
= m2

r(t)η(t)
Γmax

Vex

In this way, the term 1/m in the dynamics can be substituted by mr, making the non-
linearity polynomial instead of hyperbolic. Even if the differential equation associated
with the mass, which is linear with respect to the throttle, is now replaced by a third-order
polynomial term (m2

rη), one could take advantage of this since, when no aerodynamic force
is considered and when u = [η, b̂1,e]

T , the dynamics is completely polynomial. Therefore,
GAL with Legendre polynomials can be applied.

Control Rate In section 2.1, it is explained that a generic system can be expressed in
a control-affine form as in eq. (2.10), allowing one to obtain a bilinear model, when the
other hypotheses are satisfied. For this reason, the original control is included in the state
and its rate of change is considered as the new control:

x =
[
r v mr η ν θ ζ

]T
, u =

[
u1 u2 u3 u4

]T
=
[
η̇ ν̇ θ̇ ζ̇

]T
or

x =
[
r v mr η b̂T

1

]T
, u =

[
u1 u2 u3 u4

]T
=
[
η̇

˙̂
bT
1

]T
With these premises, it is possible to define the three models to be studied.

3.2.1. 1D Model with Aerodynamics

In this model (denoted as 1D-aero) only the vertical motion is considered, that is, ν = θ =

ζ = 0, or b̂1 = ê1; furthermore, only the vertical component of the velocity is different

3| Rocket Landing 53

from zero. Since this is a particular case of the 2D motion, eq. (3.5) can be applied,
resulting in the following value of the angle of attack:

{
α = 0◦ if v1 > 0

α = 180◦ if v1 < 0

where the case of zero velocity is undefined, but also not a case of interest since the
aerodynamic force would be zero. Given the bounds on the angle of attack, it is clear
that only a negative vertical velocity can be accepted (in good agreement with the case
of descent phase, under study). Any horizontal component of the aerodynamic force is
neglected in order to keep the motion 1D. The state, the controls and the equations of
motion read as:

x =
[
r1 v1 mr η

]T
, u = η̇

and

d

dt
x(t) = f(x(t), u(t)) =


v1(t)

−g +mr(t)η(t)Γmax +mr(t)F
A
1 (x(t))

m2
r(t)η(t)

Γmax

Vex
u(t)


ν=θ=ζ=v2=v3=0

3.2.2. 2D Model with Aerodynamics

In this model (denoted as 2D-aero) a 2D motion in the 1− 3 plane is considered, that is,
ν = ζ = v2 = 0; α can be recovered from eq. (3.5), while the other aerodynamic angles
are zero, as explained before; any out-of-plane component of the aerodynamic force is
neglected to keep the motion 2D. Therefore:

x =
[
r1 r3 v1 v3 mr η θ

]T
, u =

[
u1 u2

]T
=
[
η̇ θ̇

]T
and

54 3| Rocket Landing

d

dt
x(t) = f(x(t),u(t)) =



v1(t)

v2(t)

−g +mr(t)F
P
1 (x(t)) +mr(t)F

A
1 (x(t))

mr(t)F
P
2 (x(t)) +mr(t)F

A
2 (x(t))

m2
r(t)η(t)

Γmax

Vex
u(t)


ν=ζ=v2=0

3.2.3. 3D Model without Aerodynamics

Finally, the full 3D motion is considered, but, given its higher degree of complexity, the
aerodynamic force is completely ignored. This model is denoted as 3D-noAero. In this
case, the thrust vector can be used instead of the attitude angles, as explained before.
Therefore:

x =
[
r v mr η b̂T

1

]T
, u =

[
u1 u2 u3 u4

]T
=
[
η̇

˙̂
bT
1

]T
and

d

dt
x(t) = f(x(t),u(t)) =


v(t)

g +mr(t)F
P (x(t))

m2
r(t)η(t)

Γmax

Vex
u(t)



3.3. Benchmark Rocket Landing Formulation

The cost function J to be minimized in a fuel-optimal problem is the fuel mass consump-
tion; this is equivalent to minimize the integral of the throttle value [23]:

J(η(t), tf) =

∫ tf

0

η(t)dt

The benchmark OCP is stated in eq. (3.6), where the state and its dynamics depend on the
selected model and the constraint on the first body vector is applied to its squared norm,
since the derivative is linear with respect to the vector itself. Note that some constraints
can be ignored because implicitly satisfied, depending on the model under study. For
example, in the 2D-aero model the body vector depends on the attitude angles, but the

3| Rocket Landing 55

constraint on its norm is always satisfied through orthonormality of DCMs.

find min
u(t),tf

J(η(t), tf) s.t.



d

dt
x(t) = f(x(t),u(t))

x(0) = x0

r(tf) = rf

v(tf) = vf

ηmin ≤ η(t) ≤ ηmax

αmin ≤ α(x(t)) ≤ αmax

βmin ≤ β(x(t)) ≤ βmax

umin ≤ u(t) ≤ umax∣∣∣∣∣∣b̂1(t)
∣∣∣∣∣∣2 = 1

(3.6)

The costate vector λ = [λr1 , . . . , λb̂13]
T is defined; assuming that the problem is not

abnormal (λ0 = 0), the Hamiltonian and the augmented Hamiltonian functions read as:

H = η + λT f

Ha = H + µη,1(ηmin − η) + µη,2(η − ηmax) + µα,1(αmin − α) + µα,2(α− αmax)+

+ µβ,1(βmin − β) + µβ,2(β − βmax) + µ
T
u,1(umin − u) + µT

u,2(u− umax)+

+ µ||b̂1||

(∣∣∣∣∣∣b̂1

∣∣∣∣∣∣2 − 1

)
Some necessary conditions for optimality can be derived by applying PMP. The right-
hand side of the dynamics does not depend explicitly on time and, therefore, nor does
the Hamiltonian. This means that it is constant along the optimal trajectory and, for the
transversality condition of free final time problems, H(tF) = 0.

H(t) = 0, ∀t ∈ [0, tF] (3.7)

The partial derivatives of the Hamiltonian with respect to the control variables are ob-
tained in order to find a minimum according to PMP. Depending on the formulation:

∂H

∂u1
= λη,

∂H

∂u2
= λν ,

∂H

∂u3
= λθ,

∂H

∂u4
= λζ

56 3| Rocket Landing

or

∂H

∂u1
= λη,

∂H

∂u2
= λb̂11 ,

∂H

∂u3
= λb̂12 ,

∂H

∂u4
= λb̂13

Since the Hamiltonian has a linear relation with respect to the control, when the deriva-
tives are different from zero, the associated control is at the boundary:

ui =
umin,i + umax,i

2
+ sign

(
∂H

∂ui

)[
umin,i + umax,i

2

]
if

∂H

∂ui
̸= 0

However, singular arcs may be present; therefore, further investigation is needed. Consider
∂H/∂u1 = λη: if it is constant and equal to zero in a finite range of time [t1, t2], its
derivative must be zero.

d

dt
λη = −

∂Ha

∂η
= −1− λT

vmr
∂FP

∂η
− λmrm

2
r

Γmax

Vex
+

+ µη,1 − µη,2 = σ(x,λ) + µη,1 − µη,2 = 0

if λη = 0 ∀t ∈ [t1, t2]

If σ(x,λ) ̸= 0 in [t1, t2], either µη,1 or µη,2 are strictly positive and η = ηmin or η = ηmax.

η(t) = const⇔ d

dt
η(t) = 0⇔ u1(t) = 0 if

∂H

∂u1
= 0 and σ(x,λ) ̸= 0 ∀t ∈ [t1, t2]

Other considerations could be made, for example, by considering further derivatives of
the costate or not disregarding the abnormality, but they are beyond the scope of this
work.

3.4. Koopman-based Rocket Landing Formulation

The OCP stated in the previous section is now reformulated in order to be compliant
with a Koopman model. Suppose to have a dictionary of functions defined by ψ(x) =

[ψ1(x), . . . , ψq(x)]
T and a dynamical model:

d

dt
ψ(x(t)) = f(ψ(x(t)),u(t))

where f(ψ,u) is either a bilinear model (eq. (2.9)) or a linear model (eq. (2.11)) with
respect to the control. Furthermore, the original state can be recovered through the

3| Rocket Landing 57

projection matrix: x = Pψ(x); it is denoted with Pxi
the matrix that contains the rows

of P associated with the vector of states xi. A new set of independent states, representing
the values of the dictionary functions, is defined as L = [L1, . . . , Lq]

T . The cost function
can now be expressed as follows:

J(L(t), tf) =

∫ tf

0

PηL(t)dt

The Koopman OCP is stated in eq. (3.8). The same consideration as before, on the re-
dundancy of constraints, is applicable in this case. It is pointed out that, whereas for the
benchmark problem the initial state could be only partially constrained, leaving free, for
example, the initial throttle level, in this case all the initial state must be constrained. In
fact, its components are interdependent through the expression of the dictionary functions
with respect to the original state; they cannot be left free without imposing further con-
straints. For comparison purposes, the initial state is fully constrained in the benchmark
formulation as well.

find min
u(t),tf

J(L(t), tf) s.t.



d

dt
L(t) = f(L(t),u(t))

L(0) = ψ(x0)

PrL(tf) = rf

PvL(tf) = vf

ηmin ≤ PηL(t) ≤ ηmax

αmin ≤ α(L(t)) ≤ αmax

βmin ≤ β(L(t)) ≤ βmax

umin ≤ u(t) ≤ umax∣∣∣∣Pb̂1
L(t)

∣∣∣∣2 = 1

(3.8)

Assuming again no abnormality, the Hamiltonian can be defined, with λ ∈ Rq being the
new vector of costates:

H = PηL+ λT f

Similarly as before, some necessary conditions for optimality can be derived. The Hamil-
tonian has no explicit dependence on time, therefore eq. (3.7) still holds. The partial
derivatives of the Hamiltonian with respect to the control variables are now addressed.

58 3| Rocket Landing

For a bilinear model:

∂H

∂u1
= λTK1L,

∂H

∂u2
= λTK2L,

∂H

∂u3
= λTK3L,

∂H

∂u4
= λTK4L

For a linear model:

∂H

∂u
=
[
λTKc

]T
In both cases, the dependence of the Hamiltonian on the control is linear. Therefore, the
optimal control is at the boundaries if no singular arcs are present; otherwise, further
considerations (including abnormality) must be made. In any case, little meaning is
expected to be found, given that the Koopman model is purely data-driven and many of
its states might have no physical interpretation: their only purpose is to approximate well
enough the original state dynamics.

3.4.1. Koopman-based Linear Program

If a Koopman linear control model can be obtained, the OCP can be rewritten, after
discretization, as the LP in eq. (3.9).

find min
xLP

dT
f xLP s.t.

{
DxLP ≤ d

DeqxLP = deq

(3.9)

In particular, the time domain is discretized into segments of the same length, such that
ns + 1 nodes are obtained, separated by a constant time step ∆t. The optimization
variables are grouped in the vector xLP ∈ R(ns+1)(q+m) that includes the lifted state and
the control at each node:

xLP =
[
LT

0 uT
0 · · · LT

i uT
i · · · LT

ns
uT
ns

]T
It must be noted that the final time is fixed, because otherwise the problem would not be
a LP; for the same reason, the constraint on the body vector norm (or other constraints
that do not depend linearly on the state) cannot be imposed, thus this formulation can
only be applied to models that do not require explicit imposition of these constraints.
The vectors and matrices of eq. (3.9) are constructed hereafter.

3| Rocket Landing 59

Cost Function Instead of minimizing the integral of the throttle, which would require
the use of quadrature rules, the final mass reciprocal is minimized (maximization of final
mass). Therefore, the cost function vector only requires the reconstruction from the final
state:

df =

 0

P T
mr

0


Equality Constraints The equality constraints must take into account the initial con-
ditions, the dynamics and the endpoint constraints. More explicitly, the dynamics con-
straints impose a single-step propagation step:

Kd
0Li +Kd

cui − Li+1 = 0 ∀i ∈ {1, . . . , ns − 1}

where Kd
0 and Kd

c are the matrices representing the Koopman discrete operator with time
step ∆t. Matrix Deq and vector deq take the following expression:

Ceq =



Iq×q 0 0 0 0 0 0 0 0

Kd
0 Kd

c −Iq×q 0 0 0 0 0 0

0 0 Kd
0 Kd

c −Iq×q 0 0 0 0
. . .

0 0 0 0 0 Kd
0 Kd

c −Iq×q 0

0 0 0 0 0 0 0 0 Pr

0 0 0 0 0 0 0 0 Pv


, deq =


ψ(x0)

0

rf

vf



Inequality Constraints As they are defined in eq. (3.9), the inequality constraints are
only upper bounds on a linear combination of the optimization variables. Therefore, to
take both the lower and upper bounds into account, the terms can be rewritten as follows:

D =

[
−Dl

Du

]
, d =

[
−dl

du

]

with

60 3| Rocket Landing

Dl = Du =



0 Im×m 0 0 0 0

0 0 P 0 0 0

0 0 0 Im×m 0 0
. . .

0 0 0 0 P 0

0 0 0 0 0 Im×m


, dl =



umin

xmin

umin

...
xmin

umin


, du =



umax

xmax

umax

...
xmax

umax


It is pointed out that no bounds are imposed on the initial state, as it is already constrained
by the equality constraints. In this case the bounds are imposed on all the state through
matrix P , but any subset of the state or any linear combination of the lifted state can be
bounded by changing the reconstruction matrix.

61

4| Numerical Simulations

This chapter focuses on presenting the numerical solution of the OCPs described in chap-
ter 3. In section 4.1 a Koopman model for the dynamics is obtained, following the ap-
proaches discussed in section 2.2, and its accuracy is evaluated; in section 4.2 the bench-
mark and Koopman OCPs are solved and the optimality is discussed. Some rocket-related
constants, used throughout the chapter, are defined in table 4.1 [23, 57].

Symbol Value

Gravity acceleration g 3.71 m/s2

Exhaust velocity Vex 1966.07 m/s

Maximum thrust Γmax 16572.72 N

Reference density ρ0 1.57× 10−2 kg/m3

Reference altitude R 9354.50 m
Speed of sound Vs 220.00 m/s

Table 4.1: Rocket landing environment constants.

4.1. Koopman Model

A separated Koopman model must be obtained for each of the three sets of equations of
motion in section 3.2. In order to keep data in the same order of magnitude, all the state
is normalized according to the following relation:

x̄i = ai,1xi + ai,2 ∀i ∈ {1, . . . , n}

where x̄i is the i-th state after normalization; the equations of motion are modified ac-
cordingly. In particular, the scalars ai,1 and ai,2 are defined such that, for a normalized
state comprised in [−1, 1], the original state belongs to the intervals shown in table 4.2.
The vertical position is not expected to go below zero; the vertical velocity is bounded

62 4| Numerical Simulations

to be negative since the rocket should not raise its altitude again; the other variables are
between typical values or in bounds imposed by their own definition [58, 59].

State Bounds

r1 [0, 2000] m

r2, r3 [−2000, 2000] m

v1 [−300, 0] m/s

v2, v3 [−300, 300] m/s

m [2200, 1800] kg

η [0, 1]

θ [−180, 180]◦

b̂11, b̂12, b̂13 [−1, 1]

Table 4.2: Rocket landing bounds on state after normalization.

All the neural networks have almost the same architecture, with nh = 3, wh = 100,
const = 1, while the output dimension depends on the desired number of basis functions;
the regularization parameter depends on the case under study. Data was obtained by
propagating random initial conditions sampled uniformly in [−1, 1]n, with a the time step
between two consecutive samples ∆t = 0.11. Trajectories were propagated until one of the
states exceeded its bounds, to ensure normalization of data. The error is defined similarly
as in eq. (2.28), but it was computed separately for each subset of state variables, after de-
normalization. Note that the mass was considered, instead of the mass reciprocal, when
errors were computed. The Monte Carlo campaigns were carried out over 100 trajectories.

4.1.1. 1D Model with Aerodynamics

Since the nonlinearities are not only polynomial, due to the presence of the aerodynamic
force, GAL with Legendre polynomials cannot not be applied: EDMD and dlEDMD
are compared. First of all, a convergence analysis is performed for EDMD, for different
numbers of samples and polynomial orders; when the needed number of samples is known,
the same data set can be used to train the neural network.

Free-dynamics Model The EDMD error is shown for T = 10 s and T = 40 s in
figs. 4.1 and 4.2; three different polynomial orders were studied: 3, 5, and 7. It can be

1Dimensionless time, corresponding to ≈ 0.67 s

4| Numerical Simulations 63

observed that, in this case, higher-order polynomials do not make the system unstable
(so there are no bad closure issues) and, except for the throttle which has an accuracy in
the order of 1× 10−8 at worse, the error decreases with the polynomial order, even when
trajectories are propagated for a longer time. This is probably due to the fact that the 1D
aerodynamic force (drag) is small compared to the gravity and propulsive forces; thus, the
problem can be seen as a polynomial system (which in this case can be well-approximated
by Legendre polynomials) with a small non-polynomial perturbation as in [5]. In general,
the third-order model appears already at convergence, with a relatively small number of
samples (5×103). For the other models, the convergence behavior can be observed; in fact,
as the number of basis functions increases, more coefficients of the Koopman matrix must
be estimated and more data is needed to have good accuracy. When the 40 s trajectories
are analyzed, the convergence cannot be observed as the mean error still has a decreasing
behavior with the number of samples. However, the seventh-order model has a smaller
error than the other ones, even if not at convergence.

0.5 1 1.5 2 2.5

Number of samples 10
4

10
-5

10
-4

10
-3

10
-2

10
-1

E
rr

o
r

[m
]

deg = 3

deg = 5

deg = 7

(a) Position.

0.5 1 1.5 2 2.5

Number of samples 10
4

10
-5

10
-4

10
-3

10
-2

E
rr

o
r

[m
/s

]

deg = 3

deg = 5

deg = 7

(b) Velocity.

0.5 1 1.5 2 2.5

Number of samples 10
4

10
-10

10
-8

10
-6

10
-4

10
-2

E
rr

o
r

[k
g
]

deg = 3

deg = 5

deg = 7

(c) Mass.

0.5 1 1.5 2 2.5

Number of samples 10
4

10
-15

10
-10

E
rr

o
r

[-
]

deg = 3

deg = 5

deg = 7

(d) Throttle.

Figure 4.1: Uncontrolled 1D-aero mean error, T = 10 s, EDMD.

64 4| Numerical Simulations

0.5 1 1.5 2 2.5

Number of samples 10
4

10
-2

10
-1

10
0

E
rr

o
r

[m
]

deg = 3

deg = 5

deg = 7

(a) Position.

0.5 1 1.5 2 2.5

Number of samples 10
4

10
-2

10
-1

E
rr

o
r

[m
/s

]

deg = 3

deg = 5

deg = 7

(b) Velocity.

0.5 1 1.5 2 2.5

Number of samples 10
4

10
-6

10
-4

10
-2

E
rr

o
r

[k
g
]

deg = 3

deg = 5

deg = 7

(c) Mass.

0.5 1 1.5 2 2.5

Number of samples 10
4

10
-14

10
-12

10
-10

10
-8

E
rr

o
r

[-
]

deg = 3

deg = 5

deg = 7

(d) Throttle.

Figure 4.2: Uncontrolled 1D-aero mean error, T = 40 s, EDMD.

The EDMD model is compared with dlEDMD, using the number of basis functions associ-
ated with each polynomial order. The neural network was trained with 2.7×104 snapshot
pairs, according to the convergence behavior observed for EDMD and regularization was
introduced only for the two models with more basis functions, with r = 0.01. The mean
error for the two methods is shown in fig. 4.3, for different number of basis functions. It
can be observed how dlEDMD, in this case, performs worse than EDMD, with a mean er-
ror which is more than one order of magnitude higher than EDMD. Moreover, the error is
not always decreasing when more basis functions are used, depending on the state variable
under study; when an improvement is observed, it is, however, very modest. It is evident
that obtaining a good dlEDMD model requires a good setup of the network architecture
and of the hyperparameters (number of epochs, initialization of weights, learning rate);
in any case, since Legendre polynomials are a proper set of basis functions in this case, it
is not expected that dlEDMD performs better than EDMD with a generic dictionary of
functions. An example trajectory, showing the propagation of the original dynamics and

4| Numerical Simulations 65

of the two Koopman models with 35 basis functions (third-order polynomials), is reported
in fig. 4.4.
Nevertheless, the dlEDMD method cannot be completely discarded before introducing
the control; in fact, even if a controlled model cannot perform better than the associated
uncontrolled one, dlEDMD could still have a better accuracy than EDMD for a control
model.

0 100 200 300 400

0

0.5

1
T = 10 s

0 100 200 300 400

Number of basis functions

-10

0

10

20

30
T = 40 s

EDMD

dlEDMD

E
rr

o
r

[m
]

(a) Position.

0 100 200 300 400
-0.1

0

0.1

0.2
T = 10 s

0 100 200 300 400

Number of basis functions

0

0.5

1

1.5
T = 40 s

EDMD

dlEDMD

E
rr

o
r

[m
/s

]

(b) Velocity.

0 100 200 300 400
-0.1

0

0.1

0.2
T = 10 s

0 100 200 300 400

Number of basis functions

0

2

4

T = 40 s

EDMD

dlEDMD

E
rr

o
r

[k
g
]

(c) Mass.

0 100 200 300 400

0

2

4
10

-4
T = 10 s

0 100 200 300 400

Number of basis functions

0

2

4

10
-3

T = 40 s

EDMD

dlEDMD

E
rr

o
r

[-
]

(d) Throttle.

Figure 4.3: Uncontrolled 1D-aero mean error, EDMD and dlEDMD.

66 4| Numerical Simulations

0 10 20 30 40

t [s]

600

800

1000

1200

1400

1600

r
[m

]

True

EDMD

dlEDMD

(a) Position.

0 10 20 30 40

t [s]

-35

-30

-25

-20

-15

-10

v
 [
m

/s
]

True

EDMD

dlEDMD

(b) Velocity.

0 10 20 30 40

t [s]

1900

1950

2000

2050

2100

m
 [
k
g
]

True

EDMD

dlEDMD

(c) Mass.

0 10 20 30 40

t [s]

0

0.2

0.4

0.6

0.8

1

 [
-]

True

EDMD

dlEDMD

(d) Throttle.

Figure 4.4: Uncontrolled 1D-aero example trajectory, 35 basis functions.

Linear Control Model A linear model is obtained following the steps presented in
section 2.2, using the same amount of data as in the uncontrolled case. The control
(throttle rate of change) is a uniform, random, piecewise-constant signal such that |u| ≤
0.2 1/s, with random duration in the range [0.2, 1.5] s for each piece. The bound on the
control is compatible with a typical bandwidth and the same value can be used also for the
other dynamical models (same value, possibly different units) [45]. A regularization with
r = 0.01 was used for dlEDMD. The performances of the two methods are again compared,
using different number of basis functions, but the Monte Carlo campaign was carried
out on 10 s trajectories, because it is more difficult to obtain longer trajectories with a
bounded state, when control is introduced; the results are shown in fig. 4.5. Differently
from before, EDMD presents a divergent behavior when more basis functions are used;
dlEDMD, on the other hand, is able to learn the dictionary of functions in order to have a
better accuracy than EDMD for a linear control model, but with almost no improvement
as more functions are used.

4| Numerical Simulations 67

0 100 200 300 400

Number of basis functions

2

3

4

5

6

7

E
rr

o
r

[m
]

EDMD

dlEDMD

(a) Position.

0 100 200 300 400

Number of basis functions

0

1

2

3

4

5

6

E
rr

o
r

[m
/s

]

EDMD

dlEDMD

(b) Velocity.

0 100 200 300 400

Number of basis functions

0

2

4

6

8

10

12

E
rr

o
r

[k
g
]

EDMD

dlEDMD

(c) Mass.

0 100 200 300 400

Number of basis functions

0

0.2

0.4

0.6

0.8

1

E
rr

o
r

[-
]

10
-3

EDMD

dlEDMD

(d) Throttle.

Figure 4.5: Linear control 1D-aero mean error, T = 10 s, EDMD and dlEDMD.

Bilinear Control Model The bilinear model can be obtained after the computation of
the free-dynamics part; for simplicity, only the model with 35 basis functions is considered.
Since the control vector field of the control-affine dynamics is constant (only the throttle
is directly affected by control, and in a linear way: η̇ = u), the projection of the operator
onto the Legendre polynomials can be easily computed analytically, without the need for
data. However, the procedure in eq. (2.21), with the same amount of data as before, is
followed to show its potentiality. Any subspace of Legendre polynomials is Koopman-
invariant when considering a constant control vector field (see [3] for the expression of the
Jacobian matrix of Legendre polynomials). The same cannot be said for the dlEDMD
basis functions, thus the resulting model is, in general, a further approximation with
respect to the free-dynamics one.
In fig. 4.6, it can be observed that the bilinear model has the same accuracy of the
uncontrolled one. Although this is expected for EDMD, it shows that the dlEDMD basis
functions subspace is wide enough that the projection error is negligible; in future works

68 4| Numerical Simulations

it could be proven that, given the ability of neural networks in approximating generic
functions, the projection error of the derivative of the basis functions onto the functions
themselves can be bounded. Figure 4.7 presents an example trajectory propagated with
the two control models; the EDMD linear model is inaccurate, while the dlEDMD one is
almost comparable with the bilinear models.

(a) Position. Mean (0.051, 0.579) m. (b) Velocity. Mean (0.010, 0.127) m/s.

(c) Mass. Mean (0.01, 0.165) kg. (d) Throttle. Mean (4.0, 3.7)× 10−8.

Figure 4.6: Bilinear control 1D-aero error, T = 10 s, 35 basis functions, EDMD and
dlEDMD. The mean error is reported, from left to right, for EDMD and dlEDMD.

4| Numerical Simulations 69

0 10 20 30 40

t [s]

0

500

1000

1500

2000

r
[m

]

True

EDMD linear

EDMD bilinear

dlEDMD linear

dlEDMD bilinear

(a) Position.

0 10 20 30 40

t [s]

-100

-50

0

50

100

150

v
 [
m

/s
]

True

EDMD linear

EDMD bilinear

dlEDMD linear

dlEDMD bilinear

(b) Velocity.

0 10 20 30 40

t [s]

1700

1800

1900

2000

2100

m
 [
k
g
]

True

EDMD linear

EDMD bilinear

dlEDMD linear

dlEDMD bilinear

(c) Mass.

0 10 20 30 40

t [s]

0

0.2

0.4

0.6

0.8

1

 [
-]

True

EDMD linear

EDMD bilinear

dlEDMD linear

dlEDMD bilinear

(d) Throttle.

0 10 20 30 40

t [s]

-0.04

-0.02

0

0.02

0.04

0.06

0.08

u
1
 [
1
/s

]

(e) Control.

Figure 4.7: Controlled 1D-aero example trajectory, 35 basis functions.

4.1.2. 2D Model with Aerodynamics

The 2D-aero model is a generalization of the 1D one to values of pitch angle different
from zero. The Koopman model is obtained, again, with both EDMD and dlEDMD, to

70 4| Numerical Simulations

assess wether transversal velocity and aerodynamic forces have an impact on the EDMD
accuracy or not.

Free-dynamics Model Similarly as before, a convergence analysis for EDMD is car-
ried out; however, when propagating trajectories, it was ensured that also the angle of
attack remained in [150, 210]◦, so that the aerodynamic force can be defined (section 3.1).
Moreover, the maximum polynomial order is 5, to avoid having a very large dictionary of
functions; in fact, fifth-order Legendre polynomials for a seven-dimensional system results
in 792 basis functions. The results are presented in figs. 4.8 and 4.9. The 10 s trajec-
tories show convergence with increasing number of samples and the highest-order model
has better accuracy. In the 40 s trajectories, convergence cannot be observed and, while
this issue could be solved by using more data (not done here because of the increase in
computational burden), it can be already observed that the fifth-order model exhibits a
closure issue which makes the error higher than in the other models, in terms of position
and velocity. This is probably caused by the aerodynamic force, which in this case has
a magnitude comparable with the other forces, and by the pitch angle, which introduces
trigonometric functions in the dynamics.
The dlEDMD method is applied with the lowest number of basis functions used for EDMD
(120), with 7.2 × 104 data snapshots and with regularization parameter r = 0.01; it was
then compared with the corresponding EDMD model. An analysis with variable number
of functions was not performed, but, based on the previous results, no great increase in the
error is expected: in the worst case, the error should stay in the same order of magnitude.
Figure 4.10 shows that dlEDMD is able to achieve a greater accuracy than EDMD, in
terms of position and velocity error; the mass, throttle and pitch angle errors are larger
than the EDMD ones, but still small enough for the model to be used in practical appli-
cations; moreover, it is pointed out that the throttle and pitch angle are easier to predict
for EDMD (they are constant when no control is applied).

Linear Control Model A model is obtained with both EDMD and dlEDMD, with 120

basis functions. All the controls were generated as in the 1D-aero model, with the same
bounds on each control variable. Even if a smaller error might be achieved by dlEDMD
with a larger dictionary, it would not be convenient to have a very high-dimensional
system in the OCP that must be solved subsequently. The performances are presented in
fig. 4.11.

4| Numerical Simulations 71

1 2 3 4 5 6 7

Number of samples 10
4

10
0

10
1

10
2

E
rr

o
r

[m
]

deg = 3

deg = 4

deg = 5

(a) Position.

1 2 3 4 5 6 7

Number of samples 10
4

10
0E

rr
o
r

[m
/s

] deg = 3

deg = 4

deg = 5

(b) Velocity.

1 2 3 4 5 6 7

Number of samples 10
4

10
-6

10
-4

10
-2

10
0

10
2

E
rr

o
r

[k
g
]

deg = 3

deg = 4

deg = 5

(c) Mass.

1 2 3 4 5 6 7

Number of samples 10
4

10
-15

10
-10

10
-5

10
0

E
rr

o
r

[-
]

deg = 3

deg = 4

deg = 5

(d) Throttle.

1 2 3 4 5 6 7

Number of samples 10
4

10
-15

10
-10

10
-5

10
0

E
rr

o
r

[r
a
d
]

deg = 3

deg = 4

deg = 5

(e) Pitch angle.

Figure 4.8: Uncontrolled 2D-aero mean error, T = 10 s, EDMD.

Bilinear Control Model The bilinear model is obtained similarly as in the 1D-aero
case, with 120 basis functions. The results in fig. 4.12 and the example trajectory in
fig. 4.13 show that the bilinear model maintains the same error as the free-dynamics model;

72 4| Numerical Simulations

for what concerns the linear control model, while dlEDMD provides a more accurate
system than EDMD, none of the two can be used for accurate propagation.

1 2 3 4 5 6 7

Number of samples 10
4

10
2

10
3

E
rr

o
r

[m
]

deg = 3

deg = 4

deg = 5

(a) Position.

1 2 3 4 5 6 7

Number of samples 10
4

10
1

10
2

E
rr

o
r

[m
/s

]

deg = 3

deg = 4

deg = 5

(b) Velocity.

1 2 3 4 5 6 7

Number of samples 10
4

10
-4

10
-2

10
0

10
2

E
rr

o
r

[k
g
]

deg = 3

deg = 4

deg = 5

(c) Mass.

1 2 3 4 5 6 7

Number of samples 10
4

10
-10

10
-5

10
0

E
rr

o
r

[-
]

deg = 3

deg = 4

deg = 5

(d) Throttle.

1 2 3 4 5 6 7

Number of samples 10
4

10
-10

10
-5

10
0

E
rr

o
r

[r
a
d
]

deg = 3

deg = 4

deg = 5

(e) Pitch angle.

Figure 4.9: Uncontrolled 2D-aero mean error, T = 40 s, EDMD.

4| Numerical Simulations 73

(a) Position. Mean (296.22, 95.55) m. (b) Velocity. Mean (15.11, 7.03) m/s.

(c) Mass. Mean (0.03, 2.71) kg. (d) Throttle. Mean (9.63× 10−13, 1.5× 10−3).

(e) Pitch angle. Mean (2.53× 10−12, 0.02) rad.

Figure 4.10: Uncontrolled 2D-aero error, T = 40 s, 120 basis functions, EDMD and
dlEDMD. The mean error is reported, from left to right, for EDMD and dlEDMD.

74 4| Numerical Simulations

(a) Position. Mean (72.04, 59.95) m. (b) Velocity. Mean (18.30, 14.44) m/s.

(c) Mass. Mean (1.91, 1.26) kg. (d) Throttle. Mean (4.31× 10−6, 2.20× 10−4).

(e) Pitch angle. Mean (3.88× 10−6, 0.002) rad.

Figure 4.11: Linear control 2D-aero error, T = 10 s, 120 basis functions, EDMD and
dlEDMD. The mean error is reported, from left to right, for EDMD and dlEDMD.

4| Numerical Simulations 75

(a) Position. Mean (10.40, 4.69) m. (b) Velocity. Mean (2.02, 0.97) m/s.

(c) Mass. Mean (0.001, 0.23) kg. (d) Throttle. Mean (9.06× 10−8, 2.00× 10−4).

(e) Pitch angle. Mean (1.92× 10−7, 0.002) rad.

Figure 4.12: Bilinear control 2D-aero error, T = 10 s, 120 basis functions, EDMD and
dlEDMD. The mean error is reported, from left to right, for EDMD and dlEDMD.

76 4| Numerical Simulations

0 10 20 30 40

t [s]

-2000

-1000

0

1000

2000

3000

4000

5000

r
[m

]

True 1

True 2

EDMD linear

EDMD bilinear

dlEDMD linear

dlEDMD bilinear

(a) Position.

0 10 20 30 40

t [s]

-100

-50

0

50

100

v
 [
m

/s
]

True 1

True 2

EDMD linear

EDMD bilinear

dlEDMD linear

dlEDMD bilinear

(b) Velocity.

0 10 20 30 40

t [s]

1700

1750

1800

1850

1900

1950

2000

2050

m
 [
k
g
]

True

EDMD linear

EDMD bilinear

dlEDMD linear

dlEDMD bilinear

(c) Mass.

0 10 20 30 40

t [s]

-3

-2

-1

0

1

2

3

 [
-]

True

EDMD linear

EDMD bilinear

dlEDMD linear

dlEDMD bilinear

(d) Throttle.

0 10 20 30 40

t [s]

-3

-2

-1

0

1

2

3

 [
ra

d
]

True

EDMD linear

EDMD bilinear

dlEDMD linear

dlEDMD bilinear

(e) Pitch angle.

0 10 20 30 40

t [s]

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

u
1
 [
1
/s

]

-0.06

-0.04

-0.02

0

0.02

0.04
u

2
 [
ra

d
/s

]

(f) Control.

Figure 4.13: Controlled 2D-aero example trajectory, 120 basis functions.

Truncated Singular Value Decomposition The SVD can be performed for the
dlEDMD model to try and reduce its dimension. With a tolerance ε = 10−6, the ba-
sis functions can be reduced to 67 without affecting the accuracy (figs. 4.14 and 4.15).

4| Numerical Simulations 77

0 20 40 60 80 100 120

Singular value index

10
-15

10
-10

10
-5

10
0

10
5

S
in

g
u
la

r
v
a
lu

e

(a) Singular values.

0 20 40 60 80 100 120

Singular value index

10
-15

10
-10

10
-5

10
0

C
u
m

u
la

ti
v
e
 e

n
e
rg

y
 r

e
s
id

u
a
l

Tolerance

(b) Cumulative energy.

Figure 4.14: 2D-aero truncated SVD analysis, dlEDMD.

(a) Position. Mean 6.00 m. (b) Velocity. Mean 1.20 m/s.

(c) Mass. Mean 0.29 kg.

Figure 4.15: Bilinear control 2D-aero error after truncated SVD, T = 10 s, 67 basis
functions, dlEDMD.

78 4| Numerical Simulations

4.1.3. 3D Model without Aerodynamics

The differential equations of the 3D model are constructed such to have only polynomial
nonlinearities; therefore, GAL can be applied and its potential in particular cases is shown.
Given the higher complexity, dlEDMD is not employed, although the previous paragraphs
give a good indication that it could outperform GAL, especially in terms of number of
basis functions. No data is needed, since it is not a data-driven method; however, it is
pointed out that, when computing error on trajectories, the constraint on the norm of the
first body vector was not imposed for simplicity.
Furthermore, since a linear model for the control would be equivalent to compute the
Koopman control matrix only with the constant Legendre polynomial (section 2.2), and
since in the previous cases this did not result in a model accurate enough (when applying
EDMD), only the bilinear model is approximated.

Free-dynamics Model The model is built with polynomials of order 3, 4 and 5. It
must be noted that, with fifth-order polynomials, the dimension of the resulting system
is 4368, thus, even if it is more accurate, it would not be useful for optimization. Fig-
ure 4.16 shows how, differently from the 2D-aero model with EDMD, the error decreases
when more basis functions are used. However, the third-order model, with 364 basis func-
tions, is already accurate enough, with a mean error on the velocity of 1 × 10−1 m/s at
worse.
On the drawbacks side, the aerodynamic force is completely neglected, making it use-
less to use this Koopman model to solve the OCP, when there are other methods that
can solve the same problem more efficiently [25], without increasing the state dimension.
Furthermore, q = 364 basis functions might be too many to be handled by optimiza-
tion algorithms, considering that the number of optimization variables is in the order of
(# nodes · q) after discretization of the continuous problem. On the other hand, dlEDMD
could either take the aerodynamic force into account and, hopefully, use a smaller set of
basis functions; however, the neural network optimization algorithm must be first refined
to obtain a useful model.

Bilinear Control Model The bilinear control model is approximated starting from
the uncontrolled one with third-order polynomials. Data was generated using the same
control bounds as the previous models. As it can be seen in fig. 4.17, the accuracy is the
same of the free-dynamics model; an example trajectory can be observed in fig. 4.18.

4| Numerical Simulations 79

0 1000 2000 3000 4000 5000

Number of basis functions

10
-6

10
-4

10
-2

10
0

E
rr

o
r

[m
]

T = 10 s

T = 40 s

(a) Position.

0 1000 2000 3000 4000 5000

Number of basis functions

10
-6

10
-4

10
-2

10
0

E
rr

o
r

[m
/s

]

T = 10 s

T = 40 s

(b) Velocity.

0 1000 2000 3000 4000 5000

Number of basis functions

10
-6

10
-4

10
-2

E
rr

o
r

[k
g
]

T = 10 s

T = 40 s

(c) Mass.

0 1000 2000 3000 4000 5000

Number of basis functions

10
-17

10
-16

10
-15

E
rr

o
r

[-
]

T = 10 s

T = 40 s

(d) Throttle.

0 1000 2000 3000 4000 5000

Number of basis functions

10
-16

10
-15

10
-14

E
rr

o
r

[-
]

T = 10 s

T = 40 s

(e) Body vector.

Figure 4.16: Uncontrolled 3D-noAero mean error, T = 40 s, GAL.

80 4| Numerical Simulations

(a) Position. Mean 0.018 m. (b) Velocity. Mean 0.005 m/s.

(c) Mass. Mean 0.001 kg. (d) Throttle. Mean 2.82× 10−7.

(e) Body vector. Mean 5.29× 10−7.

Figure 4.17: Bilinear control 3D-noAero error, T = 10 s, 364 basis functions, GAL.

4| Numerical Simulations 81

0 10 20 30 40

t [s]

-2000

-1000

0

1000

2000

r
[m

]

True 1

True 2

True 3

Predicted

(a) Position.

0 10 20 30 40

t [s]

-80

-60

-40

-20

0

20

40

60

v
 [
m

/s
]

True 1

True 2

True 3

Predicted

(b) Velocity.

0 10 20 30 40

t [s]

1900

1950

2000

2050

2100

2150

m
 [
k
g
]

True

Predicted

(c) Mass.

0 10 20 30 40

t [s]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 [
-]

True

Predicted

(d) Throttle.

0 10 20 30 40

t [s]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

b
1
 [
-]

True x

True y

True z

Predicted

(e) Body vector.

0 10 20 30 40

t [s]

-0.05

0

0.05

u
 [
1
/s

]

u
1

u
2

u
3

u
4

(f) Control.

Figure 4.18: 3D-noAero example trajectory with control, 364 basis functions.

Truncated Singular Value Decomposition Figure 4.19a shows how, differently from
the 2D-aero case, there are no zero singular values. This is expected, since the basis
functions are well-defined in this case (Legendre polynomials) and they are independent

82 4| Numerical Simulations

one from the other; also, no dimensionality reduction can be obtained, looking at the
cumulative energy in fig. 4.19b, with a tolerance ε = 10−6. Therefore, no truncation is
performed for the 3D-noAero model.

0 100 200 300 400

Singular value index

6.5

7

7.5

S
in

g
u
la

r
v
a
lu

e

(a) Singular values.

0 100 200 300 400

Singular value index

10
-15

10
-10

10
-5

10
0

C
u
m

u
la

ti
v
e
 e

n
e
rg

y
 r

e
s
id

u
a
l

Tolerance

(b) Cumulative energy.

Figure 4.19: 3D-aero truncated SVD analysis, GAL.

4.2. Optimal Control

The OCPs discussed in sections 3.3 and 3.4 are solved and compared in order to assess the
optimality of the Koopman-based formulation and whether it is advantageous in terms
of numerical efficiency or not. The solutions of the NLPs were obtained using GPOPS-II
[60] with IPOPT solver [61], after discretization into a mesh composed by 40 segments
with 5 collocation points each. The LP was solved with the MATLAB function linprog
(with interior-point-legacy algorithm) using a mesh of 200 nodes, for comparison with
the bilinear model. The machine used to carry out the simulations has a 3.20 GHz AMD
Ryzen 7 7735HS CPU and 16 GB of RAM.
The solutions are compared in the following way: two control curves are obtained by
solving the two different problems; the original dynamics is propagated with both solutions
in order to show the actual optimal trajectory and how it behaves with the Koopman
control; the Koopman dynamics is also propagated with its control to verify that the
constraints are satisfied in the new formulation and to compare the trajectory with the
original one.
The decision criteria for the Koopman models obtained in section 4.1 is to choose the best
compromise in terms of number of basis functions and state accuracy. For example, if the
model with less basis functions has an acceptable accuracy, it is used in the OCP.

4| Numerical Simulations 83

4.2.1. 1D Model with Aerodynamics

Two Koopman systems are selected for the 1D-aero model: the EDMD bilinear model
and the dlEDMD linear model with 35 basis functions, because, with the same dictionary
size, each of them has the best accuracy. The initial conditions, the endpoint constraints
and the bounds used for the problem are listed in table 4.3.

State Initial condition Endpoint constraint Bounds

r1 [m] 500 0 free

v1 [m/s] −10 −0.012 free

m [kg] 1905 free free

η [-] 0.3 free [0.3, 0.8]3

u1 [1/s] free free [−0.2, 0.2]
t [s] 0 free/28 (LP) free

Table 4.3: 1D-aero optimal control parameters.

The results of the optimization are shown, for the two models, in figs. 4.20 to 4.22. The
Hamiltonian is almost constant and equal to zero (≈ 1×10−3) in both the benchmark and
the Koopman bilinear problem; however, the Hamiltonian has not been computed in the
LP. The necessary condition of the benchmark problem shows that the throttle rate is at
the bounds when λη ̸= 0 and, instead, it is zero when the costate is zero and σ(x,λ) ̸= 0.

0 5 10 15 20 25 30

t [s]

-5

0

5

10

15

H
 [
-]

10
-3

Benchmark

Koopman

(a) Hamiltonian.

0 5 10 15 20 25 30

t [s]

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

 [
s
]

-2

-1

0

1

2

 [
-]

(b) Necessary condition on throttle rate.

Figure 4.20: 1D-aero optimality conditions, bilinear model.

2In the 2D model a completely null velocity might cause issues in the computation of the wind angles.
Therefore, the first component has been fixed to this value for all the three problems.

3The engine cannot be switched off after ignition and some operability limits have been introduced.

84 4| Numerical Simulations

0 5 10 15 20 25 30

t [s]

-100

0

100

200

300

400

500

r
[m

]

Benchmark control

Koopman control

Koopman prediction

(a) Position.

0 5 10 15 20 25 30

t [s]

-30

-25

-20

-15

-10

-5

0

v
 [
m

/s
]

Benchmark control

Koopman control

Koopman prediction

(b) Velocity.

0 5 10 15 20 25 30

t [s]

1800

1820

1840

1860

1880

1900

1920

m
 [
k
g
]

Benchmark control

Koopman control

Koopman prediction

(c) Mass.

0 5 10 15 20 25 30

t [s]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 [
-]

Benchmark control

Koopman control

Koopman prediction

(d) Throttle.

0 5 10 15 20 25 30

t [s]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

u
1
 [
1
/s

]

Benchmark

Koopman

(e) Control.

Figure 4.21: 1D-aero OCP solution, bilinear model.

4| Numerical Simulations 85

0 5 10 15 20 25 30

t [s]

-100

0

100

200

300

400

500

600

r
[m

]

Benchmark control

Koopman control

Koopman prediction

(a) Position.

0 5 10 15 20 25 30

t [s]

-30

-25

-20

-15

-10

-5

0

5

v
 [
m

/s
]

Benchmark control

Koopman control

Koopman prediction

(b) Velocity.

0 5 10 15 20 25 30

t [s]

1780

1800

1820

1840

1860

1880

1900

1920

m
 [
k
g
]

Benchmark control

Koopman control

Koopman prediction

(c) Mass.

0 5 10 15 20 25 30

t [s]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 [
-]

Benchmark control

Koopman control

Koopman prediction

(d) Throttle.

0 5 10 15 20 25 30

t [s]

-0.2

-0.1

0

0.1

0.2

u
1
 [
1
/s

]

Benchmark

Koopman

(e) Control.

Figure 4.22: 1D-aero OCP solution, linear model.

It can be observed that the Koopman bilinear model gives almost exactly the same re-
sults of the benchmark. On the other hand, the results of the linear model are slightly
different, but it must be specified that in the LP the final time is fixed to 28 s, resulting

86 4| Numerical Simulations

in a longer time of flight than the benchmark (27.09 s), which is a free final time problem.
A solution for the linear program could not be obtained with the same final time of the
benchmark (probably because on the border of the feasible region); likewise, a benchmark
solution could not be obtained with any fixed final time. The difference in solution is
mostly due to this difference; however, a line search algorithm for different final times
could be implemented [25].
The performances of the models are assessed in terms of error in final position and veloc-
ity, number of iterations and computational time. For the Koopman-based formulation,
the final error is obtained by propagating the original dynamics with the optimal control
obtained. The results are summarized in table 4.4. The error of the benchmark is intro-
duced by the discretization of the problem; the bilinear model has a similar error, but the
computational time was much longer; the LP error is comparable with the other solutions,
it required less iterations than the benchmark, but longer computational time. However,
more efficient algorithms could be used to reduce the solver time. The final mass is lower
(i.e. less optimal) than the benchmark mostly because of the longer time of flight.

Benchmark Bilinear Koopman Linear Koopman

Final position error 6.79 m 6.94 m 9.54 m

Final velocity error 1.11 m/s 1.12 m/s 3.86 m/s

Final mass 1802 kg 1802 kg 1793 kg

Iterations 20 27 18

Computational time 0.56 s 18.22 s 2.81 s

Table 4.4: 1D-aero optimal control performance.

4.2.2. 2D Model with Aerodynamics

The bilinear dlEDMD model with 67 basis functions (after SVD truncation) is used for the
Koopman-based formulation, since an accurate enough linear model could not be found.
Note that the SVD truncation was crucial, not only because it reduced the dimension
of the problem, but also because it made it well-posed. In fact, when no truncation is
performed, the algorithm may try to optimize some lifted states which have no impact on
the cost function or on the constraints on the original state; no solution could be found
with the non-truncated model. In order to avoid a noisy oscillating behavior in the control
solution, a regularization term was added to the cost function, such that the integrand
became η + 5× 10−2u21 + 5× 10−1u22. The parameters for the OCP are listed in table 4.5
and the results are presented in figs. 4.23 and 4.24. The Hamiltonian is approximately

4| Numerical Simulations 87

constant and equal to zero (≈ 1 × 10−4) for the two problems, and the necessary condi-
tion on the throttle is satisfied in the benchmark problem. The regularization changes
the formulation of the problem, but with small impact on the necessary conditions, even
if is smooths out the expected bang-bang behavior in the throttle curve.
However, the Koopman formulation results in a different control trajectory which cannot
be superimposed on the benchmark one; consequently, the rocket follows a slightly dif-
ferent trajectory. This difference could be due to the approximation introduced by the
Koopman model: when the Koopman operator is approximated by a finite subspace of
functions, some modes of the original dynamics might be truncated, making the optimiza-
tion problem converge to a different solution.

State Initial condition Endpoint constraint Bounds

r [m] [1500,−1800]T [0, 0]T free

v [m/s] [−10, 110]T [−0.01, 0]T free

m [kg] 1905 free free

η [-] 0.8 free [0.3, 0.8]

θ [◦] −87.09 free free

α [◦] 182.44 free [150, 210]

u1 [1/s] free free [−0.2, 0.2]
u2 [rad/s] free free [−0.2, 0.2]
t [s] 0 free free

Table 4.5: 2D-aero optimal control parameters.

0 10 20 30 40 50

t [s]

-5

0

5

10

15

H
 [
-]

10
-4

Benchmark

Koopman

(a) Hamiltonian.

0 10 20 30 40 50

t [s]

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

 [
s
]

-1

-0.5

0

0.5

1

 [
-]

(b) Necessary condition on throttle rate.

Figure 4.23: 2D-aero optimality conditions, bilinear model.

88 4| Numerical Simulations

0 10 20 30 40 50

t [s]

-2000

-1000

0

1000

2000

r
[m

]

Benchmark control 1

Benchmark control 2

Koopman control

Koopman prediction

(a) Position.

0 10 20 30 40 50

t [s]

-100

-50

0

50

100

150

v
 [
m

/s
]

Benchmark control 1

Benchmark control 2

Koopman control

Koopman prediction

(b) Velocity.

0 10 20 30 40 50

t [s]

1700

1750

1800

1850

1900

1950

m
 [
k
g
]

Benchmark control

Koopman control

Koopman prediction

(c) Mass.

0 10 20 30 40 50

t [s]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 [
-]

Benchmark control

Koopman control

Koopman prediction

(d) Throttle.

0 10 20 30 40 50

t [s]

-1.5

-1

-0.5

0

 [
ra

d
]

Benchmark control

Koopman control

Koopman prediction

(e) Pitch angle.

0 10 20 30 40

t [s]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

u
1
 [
1
/s

]

-0.1

-0.05

0

0.05

0.1
u

2
 [
ra

d
/s

]

Benchmark 1

Koopman 1

Benchmark 2

Koopman 2

(f) Control.

Figure 4.24: 2D-aero OCP solution, bilinear model.

Table 4.6 shows the main results of the optimization problems; the error is intended
as the 2-norm of the final position or velocity error vector. It can be noted that the
Koopman optimization results in a larger error with a much longer computational time

4| Numerical Simulations 89

(and iterations). While the final mass of the Koopman model is higher (more optimal)
than the benchmark, it must not be deduced that the Koopman formulation allows a better
result to be obtained, as the resulting trajectory is more infeasible than the benchmark
one.

Benchmark Bilinear Koopman

Final position error 60.68 m 173.14 m

Final velocity error 3.38 m/s 19.03 m/s

Final mass 1712 kg 1716 kg

Iterations 57 76

Computational time 3.05 s 292.25 s

Table 4.6: 2D-aero optimal control performance.

4.2.3. 3D Model without Aerodynamics

The bilinear GAL model with 364 basis functions is used for the Koopman-based formula-
tion. As for the 2D-aero model, a regularization was applied to the control, such that the
integrand of the cost function became η + 5× 10−2u1 + 5× 10−1[u2, u3, u4]

T . In table 4.7
the parameters of the problem are listed; it must be noted that the constraint on the
norm of the body vector has been imposed explicitly, differently from the other problems,
where it was automatically satisfied. As it can be observed in fig. 4.25, the throttle neces-
sary condition is again satisfied and the Hamiltonian is constant and approximately zero
(≈ 1× 10−5) for the benchmark and the Koopman formulations.

State Initial condition Endpoint constraint Bounds

r [m] [1500, 1050,−1800]T [0, 0, 0]T free

v [m/s] [−10,−70, 110]T [−0.01, 0, 0]T free

m [kg] 1905 free free

η [-] 0.8 free [0.3, 0.8]

b̂1 [-] [0.40, 0.51,−0.76] free free

u [1/s] free free [−0.2, 0.2]
t [s] 0 free free

Table 4.7: 3D-noAero optimal control parameters.

90 4| Numerical Simulations

0 10 20 30 40 50

t [s]

-4

-2

0

2

4

6

8

10

H
 [
-]

10
-5

Benchmark

Koopman

(a) Hamiltonian.

0 10 20 30 40 50

t [s]

-0.05

0

0.05

 [
s
]

-1

-0.5

0

0.5

1

 [
-]

(b) Necessary condition on throttle rate.

Figure 4.25: 3D-aero optimality conditions, bilinear model.

Figure 4.26 shows the resulting trajectory. The Koopman solution is superimposed on the
benchmark one, as expected, given the small mean error of the Koopman system obtained
in section 4.1. The characteristic bang-bang behavior of rocket landing problems can be
observed in the throttle level, although smoothed out by the regularization imposed on
the control through the cost function. Also table 4.8 shows that the landing error and
the final mass of the two problems are comparable. However, the Koopman formulation
required 31 iterations more than the benchmark and more than 75 min to obtain a solution.
This is due to the high dimension of the Koopman system; in fact, 364 states, 4 control
variables, 1 final time variable and 200 nodes result in (364 + 4) · 200 + 1 = 73601

optimization variables. Even if the bilinear control system might decrease the complexity
of the dynamics nonlinearities, the lifting of the state invalidates all the simplification.

Benchmark Bilinear Koopman

Final position error 26.47 m 24.77 m

Final velocity error 1.14 m/s 1.06 m/s

Final mass 1693 kg 1694 kg

Iterations 74 105

Computational time 1.91 s 4606.67 s

Table 4.8: 3D-noAero optimal control performance.

4| Numerical Simulations 91

0 10 20 30 40 50

t [s]

-2000

-1500

-1000

-500

0

500

1000

1500

r
[m

]

Benchmark control 1

Benchmark control 2

Benchmark control 3

Koopman control

Koopman prediction

(a) Position.

0 10 20 30 40 50

t [s]

-100

-50

0

50

100

150

v
 [
m

/s
]

Benchmark control 1

Benchmark control 2

Benchmark control 3

Koopman control

Koopman prediction

(b) Velocity.

0 10 20 30 40 50

t [s]

1650

1700

1750

1800

1850

1900

1950

m
 [
k
g
]

Benchmark control

Koopman control

Koopman prediction

(c) Mass.

0 10 20 30 40 50

t [s]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 [
-]

Benchmark control

Koopman control

Koopman prediction

(d) Throttle.

0 10 20 30 40 50

t [s]

-1.5

-1

-0.5

0

0.5

1

b
1
 [
-]

Benchmark control 1

Benchmark control 2

Benchmark control 3

Koopman control

Koopman prediction

(e) Body vector.

0 10 20 30 40 50

t [s]

-0.1

-0.05

0

0.05

0.1

u
 [
1
/s

]

Benchmark 1

Benchmark 2

Benchmark 3

Benchmark 4

Koopman

(f) Control.

Figure 4.26: 3D-noAero OCP solution, bilinear model.

93

5| Conclusions

5.1. Lessons Learned

KOT is promising because it can, theoretically, globally linearize an uncontrolled au-
tonomous dynamical system. The objective of this work was to demonstrate its applica-
bility in a atmospheric, rocket landing, optimal control framework. Two well-established
approaches (GAL and EDMD) were compared to a more recent method: dlEDMD. It was
shown that GAL can be used with Legendre polynomials as basis functions to obtain an
analytical solution when the dynamics is polynomial; EDMD, instead, can approximate
the operator with a fixed dictionary of functions by providing a set of data, when a closed-
form solution cannot be obtained. Through some motivational examples in section 2.3,
the limitations of fixed-dictionary approaches have been discussed: in particular, they
suffer from closure issues in some cases, leading to a divergent behavior as the number of
basis functions increases. Therefore, it is crucial to select a proper set of basis functions.
In this context, dlEDMD is an innovative method that extends EDMD by learning an
optimal dictionary of functions through neural network optimization, and it proved to be
effective where the other techniques failed.
While the main hope is to being able to include the control in a linear way, the hypotheses
to be satisfied are very restrictive. In this case, it is critical to optimize the basis functions
in order to minimize this limitation; dictionary learning techniques are able to achieve
this and the experiments showed that the accuracy of dlEDMD models was always better
than the associated GAL and EDMD ones, when a linear control model was sought.
More in general, a bilinear control model can be obtained with almost no further ap-
proximations. Again, when no analytic solution is available, and GAL cannot be applied,
data-driven methods must be employed. However, some care is needed when building
it with EDMD-like methods that aim at minimizing the single-step prediction of the
discrete-time Koopman system: in fact, the bilinearizability is referred to continuous-
time systems. In this work, for the first time to the best of the author’s knowledge,
the EDMD framework has been modified to minimize the prediction of the continuous
controlled dynamics after having already obtained the free-dynamics Koopman matrix.

94 5| Conclusions

This approach is similar to gEDMD [55], that directly computes the free-dynamics Koop-
man infinitesimal generator, and to SINDy [56], that includes generic functions of the
state and control without separating the uncontrolled part from the controlled one. With
the approach of this work, an accurate enough free-dynamics Koopman operator can be
obtained first (thus making sure that the set of basis functions is appropriate) and the
control can be included consequently without additional losses. The effectiveness of the
method was demonstrated by the motivating examples in section 2.3. Moreover, all the
EDMD-based methods to include control have been successfully included in the dlEDMD
algorithm, which was originally built only for uncontrolled systems [6].
In section 4.1 three different dynamical models of the rocket landing problem, with dif-
ferent levels of complexity, have been analyzed. The EDMD method showed good per-
formance with the 1D model with aerodynamic force, with increasing accuracy as the
order of the Legendre polynomials increases; on the other hand, dlEDMD performs worse
and with less improvement with a larger dictionary of functions. However, to the aim
of constructing a linear control model, a flexible dictionary helps in the accuracy of the
resulting model, while EDMD is not accurate enough. The 2D model with aerodynamic
force showed a divergence issue when EDMD was applied, while with dlEDMD the accu-
racy was better; moreover, SVD truncation was crucial to decrease the number of basis
functions and to have a dynamics with well-conditioned matrices. An accurate enough
linear control model could not be found in this case, even with dlEDMD. Lastly, the 3D
model without aerodynamic force was tested with GAL, given its polynomial dynamics,
to show its potential in particular cases. In all cases, however, the proposed method to
obtain a bilinear control model proved to be effective, and can be used in future works.
One main conclusions is that, in general, it is better to start with GAL/EDMD methods,
because they are easier to be applied and can be effective with some dynamical models.
Only when they fail, it is worth to apply dlEDMD.
For what concerns optimal control, all the Koopman models are able to provide a solution
similar to the benchmark. The only exception is the 2D model, in which the Koopman ap-
proximation truncates the dynamics, making the solver to converge to a slightly different
solution. The bilinear model, in general, showed worse performance than the benchmark,
in terms of both optimization time and number of iterations. Despite the fact that nonlin-
earities are less complex the the ones of the original model, the increased dimensionality
of the problem makes it not useful to use a bilinear Koopman model for optimal control.
The Koopman linear model could be successfully used to build a LP; a solution could be
found with relative good performance, even if a proper comparison with the benchmark
could not be carried out, due to the different formulations of the two problems.

5| Conclusions 95

5.2. Future Directions

While the dlEDMD method proved to be effective when GAL and EDMD fail, little im-
provement in the accuracy of the Koopman model can be observed when the number of
the basis functions increases. With the current architecture of the neural network, nothing
prevents the algorithm from introducing useless functions in the output. In fact, when the
dictionary grows larger, it is more convenient to add trivial functions in the output, such
as constant functions, that have exact single-step prediction. This pushes down the value
of the cost function. Additionally, linear combinations of the already present functions
might be introduced, simply because nothing impedes it. This behavior is suggested by
the SVD analyses performed in this work: when dlEDMD was used, some singular values
were zero, meaning that some output functions could be discarded; instead, with GAL
there were no null singular values, because the Legendre polynomials are orthonormal.
For this reason, an interesting development of this work would be to tackle this problem,
because in this way the accuracy of the Koopman model could be increased even more;
furthermore, it might be crucial in order to obtain a linear model, since even dlEDMD
struggles to approximate a good model in some cases. One idea would be to take re-
dundancy into account in the loss function, penalizing the deviation of the Gram matrix
from the identity (the Gram matrix can be built on a set of vectors and is equal to the
identity if all the vectors are orthonormal [62]). Moreover, in this work the neural network
architecture was kept fixed; a more thorough analysis is needed to assess the impact of
the hyperparameters (activation function, number and width of hidden layers, etc.) on
the network’s performance. These two improvements can, hopefully, lead to a Koopman
system for a 3D model with aerodynamic force, or even for a full 6 DoFs model.
Regarding optimal control, the presented bilinear Koopman-formulation of the OCP is not
advantageous with respect to the benchmark problem; however, algorithms that specif-
ically exploit the structure of the system may be employed. For instance, the bilinear
dynamics can be easily linearizable and a sequence of LPs could be solved.
The Koopman-based LP here discussed has been built from scratch and the final time of
the problem was kept fixed: more performing algorithms can be used to solve the LP and
iterative methods can be applied to find the optimal final time. Furthermore, although
not done in this work, the eigendecomposition of the linear model could result in a further
increase of the algorithms’ computational efficiency.

97

Bibliography

[1] B. O. Koopman. Hamiltonian systems and transformations in hilbert space. Pro-
ceedings of the National Academy of Sciences of the United States of America, 17(5):
315–318, 5 1931.

[2] S. Servadio, D. Arnas, and R. Linares. Dynamics near the three-body libration points
via koopman operator theory. Journal of Guidance, Control, and Dynamics, 45(2):
1800–1814, 7 2022.

[3] S. Servadio, D. Arnas, and R. Linares. A koopman operator tutorial with othogonal
polynomials, 7 2022. URL https://arxiv.org/abs/2111.07485.

[4] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley. A data-driven approxima-
tion of the koopman operator: Extending dynamic mode decomposition. Journal of
Nonlinear Science, 25:1307–1346, 6 2015.

[5] C. Hofmann, G. Lavezzi, D. Wu, S. Servadio, and R. Linares. Comparative analy-
sis of analytical and data-driven koopman operators for the j2 problem with atmo-
spheric drag. In Astrodynamics Specialist Conference, Broomfield, CO, USA, 8 2024.
AAS/AIAA.

[6] Q. Li, F. Dietrich, E. M. Bollt, and I. G. Kevrekidis. Extended dynamic mode decom-
position with dictionary learning: A data-driven adaptive spectral decomposition of
the koopman operator. Chaos: An Interdisciplinary Journal of Nonlinear Science,
27(10):103111, 10 2017.

[7] D. Goswami and D. A. Paley. Bilinearization, reachability, and optimal control of
control-affine nonlinear systems: A koopman spectral approach. IEEE Transactions
on Automatic Control, 67(6):2715 – 2728, 6 2022.

[8] S. E. Otto and C. W. Rowley. Koopman operators for estimation and control of
dynamical systems. Annual Review of Control, Robotics, and Autonomous Systems,
4:59–87, 2 2021.

[9] D. Bruder, X. Fu, and R. Vasudevan. Advantages of bilinear koopman realizations

https://arxiv.org/abs/2111.07485

98 | Bibliography

for the modeling and control of systems with unknown dynamics. IEEE Robotics and
Automation Letters, 6(3):4369–4376, 7 2021.

[10] S. M. Rajkumar, S. Cheng, N. Hovakimyan, and D. Goswami. Linear model predictive
control for quadrotors with an analytically derived koopman model, 2024. URL
https://arxiv.org/abs/2409.12374.

[11] J. Wang, B. Xu, J. Lai, Y. Wang, C. Hu, H. Li, and A. Song. An improved koopman-
mpc framework for data-driven modeling and control of soft actuators. IEEE Robotics
and Automation Letters, 8(2):616–623, 2 2023.

[12] C. Hofmann, S. Servadio, R. Linares, and F. Topputo. Advances in koopman operator
theory for optimal control problems in space flight. In Astrodynamics Specialist
Conference, Charlotte, NC, USA, 8 2022. AAS/AIAA.

[13] J. M. Longuski, J. J. Guzmán, and J. E. Prussing. Optimal Control with Aerospace
Applications. Microcosm Press and Springer, 2014.

[14] E. T. Bell. Men of Mathematics. Simone & Schuster, 2023.

[15] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishechenko. The
Mathematical Theory of Optimal Processes. John Wiley & Sons, 1962.

[16] A. E. Bryson Jr. and Y. Ho. Applied Optimal Control. Taylor & Francis Group, 1975.

[17] J. T. Betts. Practical Methods for Optimal Control and Estimation Using Nonlinear
Programming. Society for Industrial and Applied Mathematics, 2010.

[18] R. F. Hartl, S. P. Sethi, and R. G. Vickson. A survey of the maximum principles
for optimal control problems with state constraints. SIAM Review, 37(2):181–218, 6
1995.

[19] M. Sagliano. Development of a Novel Algorithm for High Performance Reentry Guid-
ance. PhD thesis, University of Bremen, 2016.

[20] L. Huneker, M. Sagliano, and Y. E. Arslantas. Spartan: An improved global pseu-
dospectral algorithm for high-fidelity entry-descent-landing guidance analysis. In 30th
International Symposium on Space Technology and Science, Kobe-Hyogo, Japan, 7
2015. ISTS/JSASS.

[21] M. Sagliano. Performance analysis of linear and nonlinear techniques for automatic
scaling of discretized control problems. Operation Research Letters, 42(3):213–216, 3
2014.

https://arxiv.org/abs/2409.12374

| Bibliography 99

[22] M. Sagliano, D. Seelbinder, and S. Theil. Six-degree-of-freedom rocket landing opti-
mization via augmented convex–concave decomposition. Journal of Guidance, Con-
trol, and Dynamics, 47(1):20–35, 1 2024.

[23] M. Sagliano, P. Lu, D. Seelbinder, and S. Theil. Analytical treatise on endo-
atmospheric fuel-optimal rocket landings. Journal of Guidance, Control, and Dy-
namics, 48(3):450–469, 3 2025.

[24] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[25] B. Açıkmeşe and S. R. Ploen. Convex programming approach to powered descent
guidance for mars landing. Journal of Guidance, Control, and Dynamics, 30(5):
1353–1366, 9-10 2007.

[26] M. Sagliano. Pseudospectral convex optimization for powered descent and landing.
Journal of Guidance, Control, and Dynamics, 41(2):320–334, 2 2018.

[27] M. Sagliano. Generalized hp pseudospectral-convex programming for powered de-
scent and landing. Journal of Guidance, Control, and Dynamics, 42(7):1562–1570, 7
2019.

[28] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 1999.

[29] F. V. Bennett. Apollo lunar descent and ascent trajectories. In Aerospace Sci.
Meeting, New York, NY, USA, 3 1970. AIAA.

[30] M. W. Harris and M. B. Rose. Optimal Spaceraft Guidance. Utah State University,
2023.

[31] J. A. Jungmann. Gravity turn trajectories through planetary atmospheres. In Guid-
ance, control and Flight Dynamics Conference, Huntsville, AL, USA, 8 1967. AIAA.

[32] R. R. Sostaric and J. R. Rea. Powered descent guidance methods for the moon and
mars. In Guidance, Navigation, and Control Conference and Exhibit, San Francisco,
CA, USA, 8 2005. AIAA.

[33] R. Ingoldby. Guidance and control system design of the viking planetary lander. In
Guidance and Control Conference, Hollywood, FL, USA, 8 1977. AIAA.

[34] B. A. Steinfeldt, M. J. Grant, D. M. Matz, and R. D. Braun. Guidance, navigation,
and control technology system trades for mars pinpoint landing. In Atmospheric
Flight Mechanics Conference and Exhibit, Honolulu, HI, USA, 8 2008. AIAA.

100 | Bibliography

[35] U. Topcu, J. Casoliva, and K. D. Mease. Minimum-fuel powered descent for mars
pinpoint landing. Journal of Spacecraft and Rockets, 44(2):324–331, 3-4 2007.

[36] D. Garg, M. Patterson, W. W. Hager, A. V. Rao, D. A. Benson, and G. T. Hunt-
ington. A unified framework for the numerical solution of optimal control problems
using pseudospectral methods. Automatica, 46(11):1843–1851, 11 2010.

[37] I. M. Ross and F. Fahroo. A direct method for solving nonsmooth optimal control
problems. IFAC Proceedings Volumes, 35(1):479–484, 2002.

[38] S. R. Ploen, B. Açıkmeşe, and A. Wolf. A comparison of powered descent guidance
laws for mars pinpoint landing. In Astrodynamics Specialist Conference and Exhibit,
Keyston, CO, USA, 8 2006. AIAA/AAS.

[39] F. Najson and K. D. Mease. A computationally non-expensive guidance algorithm
for fuel efficient soft landing. In Guidance, Navigation, and Control Conference and
Exhibit, San Francisco, CA, USA, 8 2005. AIAA.

[40] F. Najson and K. D. Mease. Computationally inexpensive guidance algorithm for
fuel-efficient terminal descent. Journal of Guidance, Control, and Dynamics, 29(4):
955–964, 7-8 2006.

[41] B. Açıkmeşe, J. M. Carson III, and L. Blackmore. Lossless convexification of non-
convex control bound and pointing constraints of the soft landing optimal control
problem. IEEE Transactions on Control Systems Technology, 21(6):2104–2113, 11
2013.

[42] L. Blackmore, B. Açıkmeşe, and D. P. Scharf. Minimum-landing-error powered-
descent guidance for mars landing using convex optimization. Journal of Guidance,
Control, and Dynamics, 33(4):1161–1171, 7-8 2010.

[43] R. Yang and X. Liu. Fuel-optimal powered descent guidance with free final-time and
path constraints. Acta Astronautica, 172:70–81, 7 2020.

[44] X. Liu and Z. Shen. Entry trajectory optimization by second-order cone program-
ming. Journal of Guidance, Control, and Dynamics, 39(2):227–241, 2 2016.

[45] M. Sagliano, A. Heidecker, J. M. Hernández, S. Farì, M. Schlotterer, S. Woicke,
D. Seelbinder, and E. Dumont. Onboard guidance for reusable rockets: Aerodynamic
descent and powered landing. In Scitech 2021 Forum. AIAA, 1 2021.

[46] J. Meditch. On the problem of optimal thrust programming for a lunar soft landing.
IEEE Transactions on Automatic Control, 9(4):477–484, 10 1964.

| Bibliography 101

[47] E. Kaiser, J. N. Kutz, and S. L. Brunton. Data-driven discovery of koopman eigen-
functions for control. Mach. Learn.: Sci. Technol., 2(3):035023, 6 2021.

[48] R. A. DeCarlo. Linear Systems: A State Variable Approach with Numerical Imple-
mentation. Prentice Hall, 1989.

[49] D. Goswami and D. A. Paley. Global bilinearization and controllability of control-
affine nonlinear systems: A koopman spectral approach. In Annual Conference on
Decision and Control, pages 6107–6112, Melbourne, Australia, 12 2017. IEEE.

[50] M. Korda and I. Mezić. Optimal construction of koopman eigenfunctions for predic-
tion and control. IEEE Transactions on Automatic Control, 65(12):5114–5129, 12
2020.

[51] M. J. Colbrook, L. J. Ayton, and M. Szőke. Residual dynamic mode decomposition:
Robust and verified koopmanism. Journal of Fluid Mechanics, 955:A21, 1 2023.

[52] S. L. Brunton and J. N. Kutz. Data Driven Science & Engineering: Machine Learn-
ing, Dynamical Systems, and Control. Cambridge University Press, 2019.

[53] C. Nantabut. Analysis of truncated singular value decomposition for koopman
operator-based lane change model, 9 2024.

[54] W. A. Manzoor, S. Rawashdeh, and A. Mohammadi. Vehicular applications of koop-
man operator theory—a survey. IEEE Vehicular Technology Society Section, 11:
25917–25931, 3 2023.

[55] S. Klus, F. Nüske, S. Peitz, J. Niemann, C. Clementi, and C. Schütte. Data-driven
approximation of the koopman generator: Model reduction, system identification,
and control. Physica D Nonlinear Phenomena, 406:132416, 5 2020.

[56] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from
data by sparse identification of nonlinear dynamical systems. Proceedings of the
National Academy of Sciences, 113(15):3932–3937, 3 2016.

[57] J. Benito and K. D. Mease. Reachable and controllable sets for planetary entry and
landing. Journal of Guidance, Control, and Dynamics, 33(3):641–654, 5-6 2010.

[58] M. Sagliano, A. Heidecker, S. Farì, J. M. Hernández, M. Schlotterer, S. Woicke,
D. Seelbinder, and E. Dumont. Powered atmospheric landing guidance for reusable
rockets: the callisto studies. In Scitech 2024 Forum, Orlando, FL, USA, 1 2024.
AIAA.

[59] J. Carradori, M. Sagliano, and E. Mooij. Transformer-based robust feedback guidance

102 5| BIBLIOGRAPHY

for atmospheric powered landing. In Scitech 2025 Forum, Orlando, FL, USA, 1 2025.
AIAA.

[60] M. A. Patterson and A. V. Rao. A general-purpose matlab toolbox for solving optimal
control problems using variable-order gaussian quadrature collocation methods, 1
2014.

[61] J. Nocedal, A. Wächter, and R. A. Waltz. Adaptive barrier strategies for nonlinear
interior methods. SIAM Journal on Optimization, 19(4):1674–1693, 1 2009.

[62] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 2013.

103

A| Neural Network Jacobian

Matrix

The Jacobian matrix of the output of the neural network of eq. (2.24) with respect to the
state x is derived, since it is needed to compute the time derivative of the basis functions
obtained through dlEDMD. The Jacobian matrix of the network’s output ψ(x) can be
easily derived:

∇ψ(x) =

 01×n

In×n

∇zf (x)


The term ∇zf (x) can be obtained with the chain rule:


∇z0(x) = Wi

∇zj(x) =
(
Iwh×wh

+Dsh
j (x)Wj

)
∇zj−1(x) ∀j ∈ {1, . . . , nh}

∇zf (x) = Wf∇z(x)

where the matrix Dsh
j (x) is used to introduce the derivative of the hyperbolic tangent

with respect to its argument, knowing that d(tanh a)/da = sinh2 a.

Dsh
j (x) = diag

(
sinh2 (Wjzj−1(x) + pj)

)
∀j ∈ {1, . . . , nh}

with diag(a) denoting the diagonal matrix with a on the diagonal and with the hyperbolic
sine applied element-wise. It becomes evident that the dot product between the Jacobian
matrix of the network’s basis functions and the generic control-affine vector field does not
belong to the span of the basis functions themselves, exception made for particular cases.

105

B| Expression of the

Aerodynamic Angles

In the case of planar motion ν = ζ = 0, furthermore also v2,e = χv = 0. The DCMs can
be rewritten as follows:


cαcβ sβ sαcβ

sκsα − cκcαsβ cκcβ −cκsαsβ − cαsκ

−cαsκsβ − cκsα cβsκ cκcα − sκsβsα

 = Rw
b = Rw

e R
e
b =

=


cγv 0 sγv

0 1 0

−sγv 0 cγv




cθ 0 −sθ

0 1 0

sθ 0 cθ

 =


cθcγv + sθsγv 0 −sθcγv + cθsγv

0 1 0

sθcγv − cθsγv 0 cθcγv + sθsγv


By equating, for example, the first row and the central element of the leftmost and
rightmost matrices, the following system of equations is obtained:



cosα cos β = cos θ cos γv

sin β = 0

sinα cos β = − sin θ cos γv + cos θ sin γv

cos β cosκ = − sin θ cos γv + cos θ sin γv

⇒


β = aπ

κ = aπ

α = γv − θ + aπ

for a = 0, 1

107

List of Figures

2.1 dlEDMD neural network scheme. 28
2.2 Closed system Koopman sparsity pattern. 35
2.3 Closed system Koopman eigenfunctions evolution example. 36
2.4 Closed system mean error. 37
2.5 Asymptotically stable Duffing oscillator mean error. 38
2.6 Asymptotically stable Duffing oscillator eigenvalues. 38
2.7 Asymptotically stable Duffing oscillator example trajectory. 39
2.8 Stable Duffing oscillator mean error. 39
2.9 Stable Duffing oscillator eigenvalues. 40
2.10 Stable Duffing oscillator example trajectory. 40
2.11 Uncontrolled non-polynomial system mean error. 41
2.12 Non-polynomial system eigenvalues. 42
2.13 Uncontrolled non-polynomial system example trajectory. 42
2.14 Bilinear control non-polynomial system error, T = 5 TU, 10 basis functions.

EDMD mean 0.33 SU, dlEDMD mean 0.26 SU. 43
2.15 Bilinear control non-polynomial system example trajectory. 43
2.16 Linear control non-polynomial system error, T = 5 TU, 10 basis functions.

EDMD mean 0.47 SU, dlEDMD mean 0.24 SU. 44
2.17 Linear control non-polynomial system example trajectory. 45
2.18 Non-polynomial system truncated SVD analysis. 46
2.19 Uncontrolled non-polynomial system after truncated SVD error, T = 5 TU,

8 basis functions. dlEDMD mean 0.09 SU. 46

3.1 Rocket landing reference frames. 48
3.2 Rocket landing angles representation. 49

4.1 Uncontrolled 1D-aero mean error, T = 10 s, EDMD. 63
4.2 Uncontrolled 1D-aero mean error, T = 40 s, EDMD. 64
4.3 Uncontrolled 1D-aero mean error, EDMD and dlEDMD. 65
4.4 Uncontrolled 1D-aero example trajectory. 66

108 | List of Figures

4.5 Linear control 1D-aero mean error, T = 10 s, EDMD and dlEDMD. 67
4.6 Bilinear control 1D-aero error, T = 10 s, EDMD and dlEDMD. 68
4.7 Controlled 1D-aero example trajectory. 69
4.8 Uncontrolled 2D-aero mean error, T = 10 s, EDMD. 71
4.9 Uncontrolled 2D-aero mean error, T = 40 s, EDMD. 72
4.10 Uncontrolled 2D-aero error, T = 40 s, EDMD and dlEDMD. 73
4.11 Linear control 2D-aero error, T = 10 s, EDMD and dlEDMD. 74
4.12 Bilinear control 2D-aero error, T = 10 s, EDMD and dlEDMD. 75
4.13 Controlled 2D-aero example trajectory. 76
4.14 2D-aero truncated SVD analysis, dlEDMD. 77
4.15 Bilinear control 2D-aero error after truncated SVD, T = 10 s, dlEDMD. . . 77
4.16 Uncontrolled 3D-noAero mean error, T = 40 s, GAL. 79
4.17 Bilinear control 3D-noAero error, T = 10 s, GAL. 80
4.18 Controlled 3D-noAero example trajectory. 81
4.19 3D-aero truncated SVD analysis, GAL. 82
4.20 1D-aero optimality conditions, bilinear model. 83
4.21 1D-aero OCP solution, bilinear model. 84
4.22 1D-aero OCP solution, linear model. 85
4.23 2D-aero optimality conditions, bilinear model. 87
4.24 2D-aero OCP solution, bilinear model. 88
4.25 3D-aero optimality conditions, bilinear model. 90
4.26 3D-noAero OCP solution, bilinear model. 91

109

List of Tables

2.1 Comparison of Koopman approaches. 30

4.1 Rocket landing environment constants. 61
4.2 Rocket landing bounds on state after normalization. 62
4.3 1D-aero optimal control parameters. 83
4.4 1D-aero optimal control performance. 86
4.5 2D-aero optimal control parameters. 87
4.6 2D-aero optimal control performance. 89
4.7 3D-noAero optimal control parameters. 89
4.8 3D-noAero optimal control performance. 90

111

List of Symbols

In the text, the following symbols can also appear in bold, meaning that they denote
vectors. In any case, the type of variable they represent is the same. The SI units of
variables associated with well-defined physical quantities are specified. Symbols associated
with typical mathematical or physical objects are not listed (e.g. the N -dimensional
euclidean space RN).

Variable Description

n State dimension -

m Control dimension -

q Vector subspace dimension -

S Number of data samples -

ns Number of Linear Program time segments -

deg Polynomial degree -

r Position m

v Velocity m/s

m Mass kg

mr Mass reciprocal 1/kg

η Throttle level -

ν Yaw angle rad

θ Pitch angle rad

ζ Roll angle rad

g Gravity acceleration m/s2

Γ Thrust N

F P Propulsive force N

Vex Engine exhaust velocity m/s

FA Aerodynamic force N

ρ Air density kg/m3

112 | List of Symbols

Variable Description

ρ0 Reference density kg/m3

R Reference altitude m

Vs Speed of sound m/s

Gi Aerodynamic coefficient in i-th body direction m2

γv Vertical flight-path angle rad

χv Vertical azimuth angle rad

α Angle of attack rad

β Sideslip angle rad

κ Bank angle rad

e Target-fixed reference frame

b Body-fixed reference frame

w Wind-fixed reference frame

t Time s

∆t Time step s

T Trajectory time duration s

εT State error on trajectory of time duration T

x State

y Single-step propagation of state

u Control

f Continuous-time dynamics

F Discrete-time dynamics

Ψ Vector subspace

ψ Basis function of vector subspace

wΩ Weighting function for vector subspace

Ω Vector subspace domain

K Koopman infinitesimal generator

Kd Koopman discrete operator

Ku Koopman generator parametrized by the control

Kd
u Koopman operator parametrized by the control

K Koopman continuous matrix

Kd Koopman discrete matrix

| List of Symbols 113

Variable Description

Kc Koopman continuous matrix for linear control

Kd
c Koopman discrete matrix for linear control

Kξ Koopman continuous matrix associated with function ξ

Kd
ξ Koopman discrete matrix associated with function ξ

φ Koopman eigenfunction

V Matrix of Koopman right eigenvectors

Λ Diagonal matrix of Koopman continuous eigenvalues

L Koopman lifted state variable

P Koopman projection matrix

λ Costate

µf Endpoint constraint multiplier

µ Path constraint multiplier

H Hamiltonian function

Ha Augmented Hamiltonian function

Υ Endpoint function

Sw Switching function

σ Optimality condition function fo rocket landing

xLP Linear Program optimization variable

df Linear Program cost function coefficient

deq Linear Program equality constraint constant

Deq Linear Program equality constraint coefficient

d Linear Program inequality constraint constant

D Linear Program inequality constraint coefficient

dl Linear Program lower bound constant

Dl Linear Program lower bound coefficient

du Linear Program upper bound constant

Du Linear Program upper bound coefficient

ω Neural network parameter

l Neural network external layer

h Neural network hidden layer

nh Neural network hidden layers number

114 | List of Symbols

Variable Description

wh Neural network hidden layers width

lr Neural network learning rate

z Neural network layer output

W Neural network weight matrix

p Neural network bias

Dsh Neural network matrix of hyperbolic sine

VΣ Matrix of right singular vectors

UΣ Matrix of left singular vectors

UΣ,i Matrix of left singular vectors truncated at i-th value

Σ Rectangular diagonal matrix of singular values

E Singular values total energy

Ei Cumulative energy up to i-th singular value

J Generic cost function

ε Generic tolerance

ξx Data matrix of function ξ evaluated at samples of x

r Tikhonov regularization parameter

sδ Sine of generic angle δ

cδ Cosine of generic angle δ

Rj
i Matrix to rotate vector from frame i to frame j

115

Acknowledgements

I am really thankful to the German Aerospace Center (DLR) in Bremen for hosting me
during my work, and in particular to Dr. Marco Sagliano for supporting me in the
development of this thesis. I am also thankful to Prof. Francesco Topputo for supervising
this study. Lastly, I want to thank my family and my friends who supported me during
all my academic life and especially in the last period.

	Abstract
	Sommario
	Contents
	Introduction
	Literature Survey
	Optimal Control
	Pontryagin's Minimum Principle
	Two-Point Boundary-Value Problem
	Direct and Indirect Methods

	Optimization
	Karush-Kuhn-Tucker Conditions
	Interior Point Methods

	Rocket Landing
	1D Example

	Koopman Theory
	Preliminaries
	Uncontrolled Systems
	Controlled Systems

	Approaches
	Galerkin Method
	Extended Dynamic Mode Decomposition
	Dictionary Learning
	Comparison
	Truncated Singular Value Decomposition
	Other Methods

	Motivating Examples
	Closed System
	Asymptotically Stable Duffing Oscillator
	Stable Duffing Oscillator
	Non-polynomial System

	Rocket Landing
	Environment Modeling
	Equations of Motion
	1D Model with Aerodynamics
	2D Model with Aerodynamics
	3D Model without Aerodynamics

	Benchmark Rocket Landing Formulation
	Koopman-based Rocket Landing Formulation
	Koopman-based Linear Program

	Numerical Simulations
	Koopman Model
	1D Model with Aerodynamics
	2D Model with Aerodynamics
	3D Model without Aerodynamics

	Optimal Control
	1D Model with Aerodynamics
	2D Model with Aerodynamics
	3D Model without Aerodynamics

	Conclusions
	Lessons Learned
	Future Directions

	Bibliography
	Neural Network Jacobian Matrix
	Expression of the Aerodynamic Angles
	List of Figures
	List of Tables
	List of Symbols
	Acknowledgements

