Karmakar, Chandrabali und Gottschling, Nina Maria und Camero, Andres und Datcu, Mihai (2024) Uncertainty-aware Unsupervised Machine Learning to Draw Coastline. In: 2024 IEEE Conference on Advanced Topics on Measurement and Simulation, ATOMS 2024, Seiten 27-30. IEEE. Advanced Topics on Measurement and Simulation (ATOMS), 2024-08-28 - 2024-08-30, Constanta, Romania. doi: 10.1109/ATOMS60779.2024.10921503. ISBN 979-835035837-7.
|
PDF
- Nur DLR-intern zugänglich
535kB |
Offizielle URL: https://ieeexplore.ieee.org/document/10921503
Kurzfassung
Automatic drawing of coastlines with satellite imagery is a crucial factor in detecting coastline shifts due to global climatic changes. However, unavailability of labelled information poses a challenge. We propose an explainable unsupervised machine learning model to automatically draw coastlines in the Baltic sea area to create a ‘pre-labelled’ dataset, which clearly delineates the boundary pixels between sea and land. Model uncertainty is computed for each pixel and communicated to the domain experts for verification. The domain expert rectifies any error made by model with an interactive tool for human-ML interaction. Initially, we used only Sentinel-2 imagery which had cloud-related issues, later, we have proposed an uncertainty-based approach to fuse Synthetic Aperture Radar images with Sentinel-2 images.The final results show greater accuracy and less uncertainty. An user-interface tool is also presented to validate the segmentation results and integrate human expert’s knowledge
| elib-URL des Eintrags: | https://elib.dlr.de/214978/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
| Titel: | Uncertainty-aware Unsupervised Machine Learning to Draw Coastline | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | November 2024 | ||||||||||||||||||||
| Erschienen in: | 2024 IEEE Conference on Advanced Topics on Measurement and Simulation, ATOMS 2024 | ||||||||||||||||||||
| Referierte Publikation: | Nein | ||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| DOI: | 10.1109/ATOMS60779.2024.10921503 | ||||||||||||||||||||
| Seitenbereich: | Seiten 27-30 | ||||||||||||||||||||
| Verlag: | IEEE | ||||||||||||||||||||
| ISBN: | 979-835035837-7 | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Satellite imagery, Unsupervised ML, Uncertainty, Domain expert, Human-ML interaction, Explain | ||||||||||||||||||||
| Veranstaltungstitel: | Advanced Topics on Measurement and Simulation (ATOMS) | ||||||||||||||||||||
| Veranstaltungsort: | Constanta, Romania | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsbeginn: | 28 August 2024 | ||||||||||||||||||||
| Veranstaltungsende: | 30 August 2024 | ||||||||||||||||||||
| Veranstalter : | IEEE | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung, R - Fernerkundung u. Geoforschung | ||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
| Hinterlegt von: | Karmakar, Chandrabali | ||||||||||||||||||||
| Hinterlegt am: | 09 Jul 2025 11:57 | ||||||||||||||||||||
| Letzte Änderung: | 13 Okt 2025 09:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags