Ben Zekri, Alaa Eddine und Latrach, Aymen und Bahmanyar, Reza und Chaabouni-Chouayakh, Houda (2025) Towards Using Synthetic Data in Aerial Image Segmentation. In: 2025 Joint Urban Remote Sensing Event, JURSE 2025, Seiten 1-4. 17th International Conference on Joint Urban Remote Sensing (JURSE), 2025-05-04 - 2025-05-07, Gammarth-Tunis, Tunisia. doi: 10.1109/JURSE60372.2025.11076036. ISBN 979-8-3503-7183-3. ISSN 2642-9535.
![]() |
PDF
3MB |
Kurzfassung
This paper explores the use of synthetic datasets to improve aerial image segmentation, addressing the need for large and diverse data for model training. Current benchmarks often lack real-world conditions, such as high-altitude and nadir perspectives. To overcome this, we propose a controlled data generation approach using the CARLA simulator to generate aerial images of different towns under different weather and time of day conditions, with dynamic traffic elements. We compare our dataset with existing real and synthetic datasets, and evaluate model performance by training the DeepLabV3+ neural network on our dataset and testing on real data. The results show that incorporating synthetic data yields performance comparable to training on real data alone, highlighting its complementary value.
elib-URL des Eintrags: | https://elib.dlr.de/214952/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Towards Using Synthetic Data in Aerial Image Segmentation | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2025 | ||||||||||||||||||||
Erschienen in: | 2025 Joint Urban Remote Sensing Event, JURSE 2025 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/JURSE60372.2025.11076036 | ||||||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||||||
Name der Reihe: | Urban Remote Sensing Joint Event | ||||||||||||||||||||
ISSN: | 2642-9535 | ||||||||||||||||||||
ISBN: | 979-8-3503-7183-3 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Aerial Imagery, Semantic Segmentation, Synthetic Data, Deep Neural Networks, CARLA | ||||||||||||||||||||
Veranstaltungstitel: | 17th International Conference on Joint Urban Remote Sensing (JURSE) | ||||||||||||||||||||
Veranstaltungsort: | Gammarth-Tunis, Tunisia | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 4 Mai 2025 | ||||||||||||||||||||
Veranstaltungsende: | 7 Mai 2025 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - ACT4Transformation - Automated and Connected Technologies for Mobility Transformation | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||
Hinterlegt von: | Ben Zekri, Alaa Eddine | ||||||||||||||||||||
Hinterlegt am: | 25 Aug 2025 09:24 | ||||||||||||||||||||
Letzte Änderung: | 29 Aug 2025 11:51 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags