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Abstract—This paper explores the use of synthetic datasets
to improve aerial image segmentation, addressing the need for
large and diverse data for model training. Current benchmarks
often lack real-world conditions, such as high-altitude and nadir
perspectives. To overcome this, we propose a controlled data
generation approach using the CARLA simulator to generate
aerial images of different towns under different weather and time
of day conditions, with dynamic traffic elements. We compare
our dataset with existing real and synthetic datasets, and evaluate
model performance by training the DeepLabV3+ neural network
on our dataset and testing on real data. The results show that
incorporating synthetic data yields performance comparable to
training on real data alone, highlighting its complementary value.

Index Terms—Aerial Imagery, Semantic Segmentation, Syn-
thetic Data, Deep Neural Networks, CARLA

I. INTRODUCTION

Aerial imagery offers a unique perspective for applications
such as urban planning, resource management, and social
justice. These applications usually rely on in-depth analysis of
aerial images using semantic segmentation as a key tool for
informed decision making. Currently, semantic segmentation
relies on deep learning methods [1], which have shown great
promise but rely heavily on large annotated datasets that are
costly and time-consuming to create, especially for complex
urban environments. To address this challenge, simulators like
CARLA [2] provide a cost-effective alternative, generating
synthetic datasets with diverse variations in weather, lighting,
and traffic conditions. Synthetic datasets have been widely
used in computer vision and robotics, where domain adaptation
helps models trained on synthetic data adapt to real-world
images. In the aerial domain, while some synthetic datasets
address bird’s-eye perspectives [3, 4], to our knowledge, none
have focused on replicating real-world aerial images with
similar coverage, acquisition altitude, viewing angle, ground
resolution, and scene complexity.

To address this gap, we use CARLA to generate a synthetic
annotated aerial image dataset for semantic segmentation.
To closely reflect real-world conditions and ensure image
diversity, we propose a controlled data generation strategy. Our
approach utilizes eight pre-built cities in CARLA, represent-
ing urban and rural environments. We capture images under
eight different weather and time of day conditions, ensuring

Fig. 1. Aerial image of one of CARLA Simulator’s towns split into a 9× 9
grid, with each patch representing a specific combination of time of day,
weather conditions, and sun direction, as well as a semantic segmentation
annotation. The patches are labeled from (a) to (i), with the first row (a,
b, c) showing variations in sun direction under the same morning and clear
weather conditions. The second row includes rainy weather (d), a semantic
segmentation annotation (e), and foggy condition (f). The third row represents
different times of day: Noon (g), Sunset (h), and Night (i).

consistent variation and capturing each scene under different
environmental conditions. Our dataset consists of 2.8k images,
each with a size of 1408× 1056 pixels and annotated with 28
object classes. Figure 1 illustrates sample images with different
conditions and annotations from our dataset.

We evaluate the real-world applicability of our synthetic
dataset by combining it with the SkyScapes dataset [5], a real-
world aerial image segmentation dataset, to train the widely
used DeepLabV3+ [1] deep neural network. We then test the
performance of the model on real aerial image segmentation.
The results show that replacing part of the real training
data with our synthetic dataset allows the model to perform
comparably to a model trained solely on real data, highlighting
the potential of synthetic datasets to improve model training
when limited real data is available.



II. DATA GENERATION

For our dataset, we use eight pre-built towns in CARLA,
capturing images under eight different weather and time of
day conditions. To simulate traffic scenarios, we populate the
scenes with various vehicles, including two-wheelers, cars,
trucks, and buses. To simulate the aerial perspective, we
position a downward facing camera (pitched at 90°) at an
altitude of 500 meters, paired with a semantic segmentation
sensor covering the same field of view. The camera starts at the
northwest corner of the map and moves sequentially east and
south to capture non-overlapping 1408 × 1056 pixel images
covering an area of 112 m × 84 m with a ground sampling
distance (GSD) of 8 cm/pixel. Algorithm 1 shows the image
generation process.

Algorithm 1 Aerial Imagery Dataset Generation
Input: H, W, XCoverage, YCoverage, FOV
Initialize: MotionBlur ← Off

1: for town in towns do
2: for weather in weathers do
3: CityBorders ← RENDERTOWN(town, weather)
4: for x in range(0, CityBorderEast - CityBorderWest, XCoverage) do
5: for y in range(0, CityBorderNorth - CityBorderSouth, YCoverage) do
6: vehicles ← SPAWNVEHICLESRANDOMLY()
7: x position ← CityBorderWest + x
8: y position ← CityBorderSouth + y
9: sensors ← PLACESENSORS(x position, y position, H, W, FOV)

10: CAPTUREDATA(sensors)
11: DESTROY(vehicles, sensors)
12: end for
13: end for
14: end for
15: end for

III. DATA OVERVIEW

Our dataset includes fine-grained semantic annotations for
28 classes as defined in CARLA’s documentation [2]. For
comparability with other datasets, we group these classes into
seven major classes: “building”, “road”, “sidewalk”, “vegeta-
tion”, “ground”, “water”, and “others”. Figure 2 illustrates the
class distribution across towns. Urban towns, such as towns
1, 2, 3, and 10, have a high prevalence of buildings, while
the other towns, with significant greenery, reflect suburban or
rural characteristics. This variation demonstrates the dataset’s
ability to capture a diverse range of urban and non-urban
environments.

In Table I, we compare our dataset with the existing
datasets for semantic segmentation of aerial images. Most
synthetic datasets, such as SkyScenes [4], provide bird’s-eye-
view images from relatively low altitudes (below 100 m),
simulating common UAV images that differ significantly from
aerial images captured by airborne platforms like helicopters,
high-altitude UAVs, and airplanes. To ensure a fair comparison
with existing synthetic datasets, we only compare our dataset
to the VALID dataset [3], which contains images captured at
an altitude of 100 meters. Compared to VALID, our dataset
offers a larger number of aerial images and a better GSD
of 8 cm/pixel, making it more suitable for precise semantic
segmentation tasks. Additionally, the higher capturing altitude
in our dataset reduces perspective distortion, especially for

Fig. 2. Class distribution across the towns.

tall objects like buildings, and allows for a larger coverage
area in each image, making it more effective for large-scale
segmentation applications.

Compared to the real datasets, our dataset offers a higher
level of annotation detail and accuracy. For example, the Aerial
KITTI [7], Potsdam [6], and Vaihingen [6] datasets contain
fewer classes (4 and 6 compared to our 28) and less accurate
labels. Additionally, their images suffer from distortions due
to imperfect orthorectification. For the TorontoCity dataset [8],
the use of automated labeling across a large area compromises
the precision of the labels.

In terms of scene diversity, real aerial datasets are limited
by weather, daylight, and environmental conditions, as flight
campaigns are typically conducted under favorable weather
and specific lighting conditions. In addition, their images
often lack scene diversity due to high costs and logistical
challenges. In contrast, synthetic datasets such as ours and
VALID allow for easy variation by using multiple virtual towns
and capturing images under different weather and daytime
conditions with minimal effort. Among the real datasets, only
LoveDA [9] and FLAIR [10] include images from multiple
towns.

IV. EXPERIMENTS

We divide our dataset into training, validation, and test
sets, allocating 80%, 10%, and 10% of the data, respectively,
in a pseudorandom manner. To address the class imbalance
between urban and rural classes, we ensure that each split con-
tains an equal number of images from each. Additionally, we
place all variations of a given image under different weather
or lighting conditions in the same split. This approach results
in 528 training images and 64 images each for validation
and testing. By balancing urban and rural representation, we
mitigate disparities in class distribution, making the dataset
well suited for training and evaluating semantic segmentation
models.

For the experiments, we address GPU memory limitations
by splitting each image into patches of 512× 512 with a 50%
overlap. Additionally, we apply horizontal and vertical flipping
for data augmentation.

A key measure of the quality of a synthetic dataset is
the ability of models trained or tuned on it to perform



TABLE I
COMPARISON BETWEEN OUR GENERATED DATASET AND EXISTING REAL-WORLD AND SYNTHETIC AERIAL SEGMENTATION DATASETS.

Dataset Diversity Classes Images GSD (cm/pixel) Image dimension (px) Aerial coverage (km2) Altitude (m)

Diversity Town Daytime Weather

Real

SkyScapes [5] × × × 31 16 13 5616× 3744 5.69 1000
Potsdam [6] × × × 6 38 5 6000× 6000 3.42 -
Vaihingen [6] × × × 6 33 9 2493× 2493 (avg) 1.36 500
Aerial KITTI [7] × × × 4 20 9 variable 3.23 -
TorontoCity [8] × × × 10 - 10 - 712 650
LoveDA [9] ✓ × × 7 536 30 6000× 6000 536 -
FLAIR [10] ✓ × × 19 77k 20 512× 512 817 -

Synthetic

VALID [3] ✓ ✓ ✓ 30 1.7k 20 1024× 1024 - 100
Our ✓ ✓ ✓ 28 2.6k 8 1408× 1056 4.11 500

TABLE II
CLASS MAPPING BETWEEN OUR DATASET AND SKYSCAPES

Common
Classes

Our classes SkyScapes classes

Clutter Other - Unlabeled - Fence -
Wall - Pole - Traffic Light
- Traffic Sign - Sky - Static
- Dynamic - Guard Rail -
Pedestrian - Train

Clutter

Urban Sur-
face

Roads - Ground - Bridge -
Rail track - Sidewalks

Paved Road - Non Paved
Road - Danger Area - Bike
Ways - Paved Parking Place
- Non Paved Parking Place
- Entrance Exit - Impervious
Surface - Sidewalks

Road
Markings

Road line Lane Markings

Building Building Building

Car Car Car - Van - Trailer

Truck Truck Truck - Long Truck

Bus Bus Bus

Low Vege-
tation

Terrain Low vegetation

Tall Vege-
tation

Vegetation Tree

effectively on real-world data. For this evaluation, we use the
SkyScapes dataset, a real-world aerial image dataset tailored
for centimeter-level semantic segmentation. With a GSD of
13 cm/pixel, a coverage of 5.69 km2, and the highest num-
ber of classes among similar real-world datasets, SkyScapes
serves as a highly relevant benchmark for comparison. To
enable comparison, we map the labels from our dataset and
SkyScapes into a unified set of 9 classes, as detailed in
Table II. While mappings for classes like “Buildings” and
“Vehicles” are straightforward, differences in granularity and
definitions require adjustments for others. For instance, some
classes are more detailed in our dataset, while others are more
nuanced in SkyScapes. Classes without equivalents, such as
“Water Surface” and “Bicycle”, are excluded to ensure a fair
and meaningful comparison.

For our semantic segmentation experiments, we use the
DeepLabV3+ [1] network, known for its strong performance
on benchmark datasets like Cityscapes. The model combines
techniques such as atrous convolution and an encoder-decoder
structure, making it well-suited for complex urban environ-
ments in aerial imagery. We consider four training scenarios:
(1) training exclusively on SkyScapes, (2) training exclusively
on our dataset, (3) training on a combined dataset with 25%
from SkyScapes and 75% from our dataset, and (4) training
on a combined dataset with an equal 50% split from each.
The first two scenarios establish baseline performances for real
and synthetic data, while the latter two assess the benefits of
integrating synthetic data into aerial segmentation tasks. For
evaluation, we used mean Intersection over Union (mIoU),
frequency-weighted IoU (FreqW IoU), and pixel accuracy
(PA). These metrics are commonly used in semantic seg-
mentation, with FreqW IoU being particularly important for
addressing the significant class imbalance in both datasets.

Table III shows the test results on our dataset and SkyScapes
for different training scenarios. The results show a significantly
worse performance when training on SkyScapes and testing
on our dataset compared to testing on SkyScapes images. A
similar trend is observed when training on our dataset and
testing on SkyScapes. This performance gap may be due to
both the domain difference between synthetic and real data and
the different scene content in each dataset. When we combine
equal shares of both datasets, the performance improves signif-
icantly, with the model performing similarly well on both real
and synthetic test data. Interestingly, reducing the share of real
data to 25% and replacing it with our synthetic data results in
performance comparable to training with three times more real
data when we only use SkyScapes. This indicates the potential
complementary role of synthetic data, especially when access
to real-world data is limited. Figure 3 shows segmentation
results for two sample images from SkyScapes across different
training scenarios. Notably, models trained on the combined
dataset demonstrate improved robustness to shadows, likely
due to the diverse shadow orientations in the synthetic data.



Fig. 3. Segmentation results on sample images from SkyScapes. From left to right: input images, ground truth, predictions from models trained exclusively
on SkyScapes data, on the 50-50 combination of our synthetic and SkyScapes data, and on the 75% synthetic data and 25% SkyScapes data combination.

TABLE III
EXPERIMENTAL RESULTS USING DEEPLAB-V3+ ON DIFFERENT

TRAINING SCENARIOS

Training Test mIoU (%) FreqW IoU (%) PA (%)

SkyScapes SkyScapes 49.72 71.99 83.31
Ours 17.11 34.35 43.61

50% Ours + 50% SkyScapes SkyScapes 48.14 71.14 82.58
Ours 58.73 66.12 73.87

75% Ours + 25% SkyScapes SkyScapes 44.27 68.58 80.75
Ours 53.98 73.60 79.56

Ours SkyScapes 18.33 26.68 42.11
Ours 57.50 75.08 82.61

V. CONCLUSION

In this work, we presented an approach for creating a
diverse, large-scale synthetic dataset for aerial image seg-
mentation using the CARLA simulator. The dataset captures
high-altitude, nadir aerial perspectives with high ground res-
olution, and includes diverse urban and rural environments,
weather conditions, and dynamic elements. Experiments with
the DeepLabV3+ network show that models trained on this
synthetic dataset generalize well to real-world data, especially
when combined with a limited amount of real data. This
highlights the potential of synthetic data to complement real
data, especially when real data is scarce or difficult to obtain.
Future work will focus on a more comprehensive evaluation
of the dataset to further explore its potential and limitations.
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