elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Spectral Super-Resolution for Greenhouse Gas Detection

Gonzalez, Ruben und Blumenstiel, Benedikt und Bangalore, Ranjini und Ait Ali Braham, Nassim und Jakubik, Johannes und Fraccaro, Paolo und Albrecht, Conrad M und Brunschwiler, Thomas (2025) Spectral Super-Resolution for Greenhouse Gas Detection. 2025 ESA Living Planet Symposium, 2025-06-23 - 2025-06-27, Vienna, Austria.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://lps25.esa.int/programme/programme-session/?id=954D4F1E-F4FF-49E7-9C0A-2BBA9300BC44&presentationId=7B83669C-B46E-41D8-AF96-F1A30CD2242B

Kurzfassung

Hyperspectral imaging offers significant potential for greenhouse gas (GHG) monitoring due to its ability to capture detailed spectral information across broad wavelength ranges. This coverage includes key wavelength regions of the absorption spectra to detect gases such as carbon dioxide (CO2), methane (CH4), and nitrogen dioxide (NO2). Today, the spatial and temporal coverage of hyperspectral missions such as EnMAP, PRISMA, and EMIT is limited. In contrast, multispectral remote sensing imagery generated by Sentinel-2 is available with global coverage on a weekly basis, but lacks the spectral granularity and specific coverage in the critical absorption regions of these gases. Our research overcomes these limitations by reconstructing hyperspectral data from multispectral inputs. We developed and pre-trained a spectral transformer model to capture spectral dependencies and subsequently fine-tuned it on multispectral data for spectral reconstruction. The model is based on a self-supervised masked autoencoder and pre-trained with the majority of spectral channels randomly masked. To achieve this, each channel is individually tokenized, and a wavelength-based positional embedding is added. The pre-training task is to reconstruct the masked channels from the unmasked input, simulating the downstream application of spectral super-resolution. During pre-training, we either apply spatial-spectral attention between all tokens or spectral attention only. The later apporach reduces the computational cost, which for self-attention scales quatratic with the token count. We used a large-scale hyperspectral dataset of over 538k EnMAP samples for pre-training and constructed a dataset of 11k aligned Sentinel-2 and EnMAP images for the fine-tuning. During the fine-tuning, the model performs spectral super-resolution and predicts hyperspectral data from the Sentinel-2 input. The study evaluates the utility of the reconstructed hyperspectral data in two GHG downstream tasks, comparing its performance against original hyperspectral and multispectral data. For these tasks, we aligned the EnMAP-Sentinel-2 dataset with CH4 and NO2 mesurements from Sentinel-5P. The results indicate that the reconstructed data improves GHG prediction accuracy compared to models based on only multispectral data, suggesting its potential to bridge the trade-off between spectral resolution and spatio-temporal coverage. This approach offers insights into leveraging the complementary strengths of hyperspectral and multispectral imaging systems for enhanced atmospheric monitoring.

elib-URL des Eintrags:https://elib.dlr.de/214936/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Spectral Super-Resolution for Greenhouse Gas Detection
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Gonzalez, RubenUniversity of St. GallenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Blumenstiel, BenediktIBM Research EuropeNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bangalore, RanjiniIBM ResearchNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ait Ali Braham, NassimNassim.AitAliBraham (at) dlr.dehttps://orcid.org/0009-0001-3346-3373NICHT SPEZIFIZIERT
Jakubik, JohannesIBM Research EuropeNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Fraccaro, PaoloIBM ResearchNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Albrecht, Conrad MConrad.Albrecht (at) dlr.dehttps://orcid.org/0009-0009-2422-7289NICHT SPEZIFIZIERT
Brunschwiler, ThomasIBM Research EuropeNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:26 Juni 2025
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:hyperspectral imagery, vision transformer, self-supervised learning, EnMAP, Sentinel-2, super-resolution, greenhouse gase detection
Veranstaltungstitel:2025 ESA Living Planet Symposium
Veranstaltungsort:Vienna, Austria
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:23 Juni 2025
Veranstaltungsende:27 Juni 2025
Veranstalter :European Space Agency
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz, R - Optische Fernerkundung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Albrecht, Conrad M
Hinterlegt am:15 Jul 2025 12:30
Letzte Änderung:06 Aug 2025 11:19

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.