Juliust, Hessel and Elsen, Katharina Maria and Schady, Arthur and Gharbi, Sirine and Dietrich, Felix (2024) Data-Driven and Physics-Informed Machine Learning for Outdoor Acoustic Wave Modeling using the Linearized Euler Equations. In: Data-Driven and Physics-Informed Machine Learning for Outdoor Acoustic Wave Modeling using the Linearized Euler Equations. DAS/DAGA 2025 - 51st Annual Meeting on Acoustics, 2024-03-17 - 2024-03-20, Copenhagen, Denmark. doi: 10.71568/dasdaga2025.630.
|
PDF
2MB |
Official URL: https://doi.org/10.71568/dasdaga2025.630
Abstract
Modeling of outdoor acoustic wave propagation is crucial for diverse applications, including noise mapping for urban planning [1], environmental monitoring [2], and aviation acoustics [3]. The propagation of acoustic waves outdoors is strongly influenced by atmospheric conditions, such as wind and temperature gradients [2], and interactions with topographic features, making accurate predictions challenging.
| Item URL in elib: | https://elib.dlr.de/214529/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||||||
| Title: | Data-Driven and Physics-Informed Machine Learning for Outdoor Acoustic Wave Modeling using the Linearized Euler Equations | ||||||||||||||||||||||||
| Authors: |
| ||||||||||||||||||||||||
| Date: | 1 May 2024 | ||||||||||||||||||||||||
| Journal or Publication Title: | Data-Driven and Physics-Informed Machine Learning for Outdoor Acoustic Wave Modeling using the Linearized Euler Equations | ||||||||||||||||||||||||
| Refereed publication: | Yes | ||||||||||||||||||||||||
| Open Access: | Yes | ||||||||||||||||||||||||
| Gold Open Access: | No | ||||||||||||||||||||||||
| In SCOPUS: | No | ||||||||||||||||||||||||
| In ISI Web of Science: | No | ||||||||||||||||||||||||
| DOI: | 10.71568/dasdaga2025.630 | ||||||||||||||||||||||||
| Status: | Published | ||||||||||||||||||||||||
| Keywords: | Outdoor Acoustic Propagation, Linearized Euler Equations (LEE), Physics-Informed Neural Networks (PINNs), Fourier Neural Operators (FNOs), Machine Learning in Acoustics | ||||||||||||||||||||||||
| Event Title: | DAS/DAGA 2025 - 51st Annual Meeting on Acoustics | ||||||||||||||||||||||||
| Event Location: | Copenhagen, Denmark | ||||||||||||||||||||||||
| Event Type: | international Conference | ||||||||||||||||||||||||
| Event Start Date: | 17 March 2024 | ||||||||||||||||||||||||
| Event End Date: | 20 March 2024 | ||||||||||||||||||||||||
| Organizer: | German and Danish Acoustical Societies, DEGA and DAS | ||||||||||||||||||||||||
| HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
| HGF - Program: | Space | ||||||||||||||||||||||||
| HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
| DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
| DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
| DLR - Research theme (Project): | R - Atmospheric and climate research | ||||||||||||||||||||||||
| Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
| Institutes and Institutions: | Institute of Atmospheric Physics > Applied Meteorology | ||||||||||||||||||||||||
| Deposited By: | Juliust, Hessel | ||||||||||||||||||||||||
| Deposited On: | 10 Jun 2025 10:33 | ||||||||||||||||||||||||
| Last Modified: | 10 Jun 2025 10:33 |
Repository Staff Only: item control page