elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

A Concept for Increasing Trustworthiness in Deep Learning Perception for UAS Using Map Data

Schmidt, Rebecca und Rüter, Joachim und Schirmer, Sebastian und Krause, Stefan und Dauer, Johann C. (2025) A Concept for Increasing Trustworthiness in Deep Learning Perception for UAS Using Map Data. In: AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025. 2025 AIAA SciTech Forum, 2025-01-06 - 2025-01-10, Orlando, FL, USA. doi: 10.2514/6.2025-2513. ISBN 978-162410723-8.

[img] PDF
3MB

Kurzfassung

Deep Learning (DL)-based perception models provide state-of-the-art results in semantic segmentation and object detection, allowing an unmanned aircraft system (UAS) to perceive and understand its environment. This capability is particularly crucial for applications like onboard risk-based planning, where a UAS dynamically adjusts its trajectory given critical changes that are detected during flight. However, fully trusting the output of a DL model without safeguards is inadvisable, as DL models are regarded as black boxes, lacking explainability and interpretability of their outputs. To enhance trust in the DL output, regulatory bodies recommend monitoring the model output during flight by an independent system. In this work, we propose a runtime monitoring concept for a DL-based UAS environment perception system that detects static and dynamic objects. We increase the trustworthiness of the system by computing the plausibility of the model output using trustworthy map data and known contextual relationships. For static objects such as buildings and streets, the plausibility is calculated against the map data. The plausibility of dynamic objects such as pedestrians or vehicles, which are not present in the map data, is calculated using an ontology derived from map data. After presenting the concept as well as its strengths and weaknesses, future avenues for deploying the concept are highlighted.

elib-URL des Eintrags:https://elib.dlr.de/214423/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:A Concept for Increasing Trustworthiness in Deep Learning Perception for UAS Using Map Data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schmidt, Rebeccarebecca.schmidt (at) dlr.dehttps://orcid.org/0000-0002-9249-3812203541011
Rüter, Joachimjoachim.rueter (at) dlr.dehttps://orcid.org/0000-0002-5559-5481203541012
Schirmer, Sebastiansebastian.schirmer (at) dlr.dehttps://orcid.org/0000-0002-4596-2479NICHT SPEZIFIZIERT
Krause, StefanStefan.Krause (at) dlr.dehttps://orcid.org/0000-0001-6969-0036203541013
Dauer, Johann C.Johann.Dauer (at) dlr.dehttps://orcid.org/0000-0002-8287-2376NICHT SPEZIFIZIERT
Datum:2025
Erschienen in:AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.2514/6.2025-2513
ISBN:978-162410723-8
Status:veröffentlicht
Stichwörter:UAS, Perception Monitoring, OpenStreetMap, Semantic Segmentation, Object Detection
Veranstaltungstitel:2025 AIAA SciTech Forum
Veranstaltungsort:Orlando, FL, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:6 Januar 2025
Veranstaltungsende:10 Januar 2025
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Digitalisierung
DLR - Forschungsgebiet:D IAS - Innovative autonome Systeme
DLR - Teilgebiet (Projekt, Vorhaben):D - SKIAS
Standort: Braunschweig
Institute & Einrichtungen:Institut für Flugsystemtechnik > Unbemannte Luftfahrzeuge
Institut für Flugsystemtechnik
Hinterlegt von: Schmidt, Rebecca
Hinterlegt am:25 Jan 2026 20:50
Letzte Änderung:25 Jan 2026 20:50

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.