Kakhani, Nafiseh und Taghizadeh-Mehrjardi, Ruhollah und Omarzadeh, Davoud und Ryo, Masahiro und Heiden, Uta und Scholten, Thomas (2025) Towards Explainable AI: Interpreting Soil Organic Carbon Prediction Models Using a Learning-Based Explanation Method. European Journal of Soil Science, 76, Seiten 1-18. Wiley. doi: 10.1111/ejss.70071. ISSN 1351-0754.
![]() |
PDF
- Verlagsversion (veröffentlichte Fassung)
4MB |
Offizielle URL: https://bsssjournals.onlinelibrary.wiley.com/doi/full/10.1111/ejss.70071
Kurzfassung
An understanding of the key factors and processes influencing the variability of soil organic carbon (SOC) is essential for the development of effective policies aimed at enhancing carbon storage in soils to mitigate climate change. In recent years, complex computational approaches from the field of machine learning (ML) have been developed for modelling and mapping SOC in various ecosystems and over large areas. However, in order to understand the processes that account for SOC variability from ML models and to serve as a basis for new scientific discoveries, the predictions made by these data-driven models must be accurately explained and interpreted. In this research, we introduce a novel explanation approach applicable to any ML model and investigate the significance of environmental features to explain SOC variability across Germany. The methodology employed in this study involves training multiple ML models using SOC content measurements from the LUCAS dataset and incorporating environmental features derived from Google Earth Engine (GEE) as explanatory variables. Thereafter, an explanation model is applied to elucidate what the ML models have learned about the relationship between environmental features and SOC content in a supervised manner. In our approach, a post hoc model is trained to estimate the contribution of specific inputs to the outputs of the trained ML models. The results of this study indicate that different classes of ML models rely on interpretable but distinct environmental features to explain SOC variability. Decision tree-based models, such as random forest (RF) and gradient boosting, highlight the importance of topographic features. Conversely, soil chemical information, particularly pH, is crucial for the performance of neural networks and linear regression models. Therefore, interpreting data-driven studies requires a carefully structured approach, guided by expert knowledge and a deep understanding of the models being analysed.
elib-URL des Eintrags: | https://elib.dlr.de/214333/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | Towards Explainable AI: Interpreting Soil Organic Carbon Prediction Models Using a Learning-Based Explanation Method | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | Januar 2025 | ||||||||||||||||||||||||||||
Erschienen in: | European Journal of Soil Science | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
Band: | 76 | ||||||||||||||||||||||||||||
DOI: | 10.1111/ejss.70071 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 1-18 | ||||||||||||||||||||||||||||
Verlag: | Wiley | ||||||||||||||||||||||||||||
ISSN: | 1351-0754 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | explainable AI, Germany, Google Earth Engine, HLS product, remote sensing, soil organic carbon | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Abbildende Spektroskopie | ||||||||||||||||||||||||||||
Hinterlegt von: | Heiden, Dr.rer.nat. Uta | ||||||||||||||||||||||||||||
Hinterlegt am: | 06 Jun 2025 11:21 | ||||||||||||||||||||||||||||
Letzte Änderung: | 07 Aug 2025 14:28 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags