Wang, Sirui und Ait Ali Braham, Nassim und Xiao Xiang, Zhu (2025) Weak–Strong Graph Contrastive Learning Neural Network for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 63. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2025.3562261. ISSN 0196-2892.
![]() |
PDF
- Verlagsversion (veröffentlichte Fassung)
6MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10988682
Kurzfassung
Deep learning methods have shown promising results in various hyperspectral image (HSI) analysis tasks. Despite these advancements, existing models still struggle to accurately identify fine-classified land cover types on noisy HSIs. Traditional methods have limited performance when extracting features from noisy hyperspectral data. Graph neural networks (GNNs) offer an adaptable and robust structure by effectively extracting both spectral and spatial features. However, supervised models still require large quantities of labeled data for effective training, posing a significant challenge. Contrastive learning (CL), which leverages unlabeled data for pretraining, can mitigate this issue by reducing the dependency on extensive manual annotation. To address the issues, we propose WSGraphCL, a weak-strong graph CL model for HSI classification, and conduct experiments in a few-shot scenario. First, the image is transformed into K-hop subgraphs through a spectral-spatial adjacency matrix construction method. Second, WSGraphCL leverages CL to pretrain a graph-based encoder on the unlabeled HSI. We demonstrate that weak-strong augmentations and false negative pairs filtering stabilize pretraining and get good-quality representations. Finally, we test our model with a lightweight classifier on the features with a handful of labels. Experimental results showcase the superior performance of WSGraphCL compared to several baseline models, thereby emphasizing its efficacy in addressing the identified limitations in HSI classification. The code repository will be published on the GitHub project under the URL: https://github.com/zhu-xlab/WSGraphCL
elib-URL des Eintrags: | https://elib.dlr.de/214310/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Weak–Strong Graph Contrastive Learning Neural Network for Hyperspectral Image Classification | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Mai 2025 | ||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 63 | ||||||||||||||||
DOI: | 10.1109/TGRS.2025.3562261 | ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Contrastive learning (CL), deep learning, graph neural networks (GNNs), hyperspectral image (HSI) classification, self-supervised learning (SSL) | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Ait Ali Braham, Nassim | ||||||||||||||||
Hinterlegt am: | 06 Jun 2025 10:37 | ||||||||||||||||
Letzte Änderung: | 06 Jun 2025 10:37 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags