elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Weak–Strong Graph Contrastive Learning Neural Network for Hyperspectral Image Classification

Wang, Sirui und Ait Ali Braham, Nassim und Xiao Xiang, Zhu (2025) Weak–Strong Graph Contrastive Learning Neural Network for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 63. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2025.3562261. ISSN 0196-2892.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
6MB

Offizielle URL: https://ieeexplore.ieee.org/document/10988682

Kurzfassung

Deep learning methods have shown promising results in various hyperspectral image (HSI) analysis tasks. Despite these advancements, existing models still struggle to accurately identify fine-classified land cover types on noisy HSIs. Traditional methods have limited performance when extracting features from noisy hyperspectral data. Graph neural networks (GNNs) offer an adaptable and robust structure by effectively extracting both spectral and spatial features. However, supervised models still require large quantities of labeled data for effective training, posing a significant challenge. Contrastive learning (CL), which leverages unlabeled data for pretraining, can mitigate this issue by reducing the dependency on extensive manual annotation. To address the issues, we propose WSGraphCL, a weak-strong graph CL model for HSI classification, and conduct experiments in a few-shot scenario. First, the image is transformed into K-hop subgraphs through a spectral-spatial adjacency matrix construction method. Second, WSGraphCL leverages CL to pretrain a graph-based encoder on the unlabeled HSI. We demonstrate that weak-strong augmentations and false negative pairs filtering stabilize pretraining and get good-quality representations. Finally, we test our model with a lightweight classifier on the features with a handful of labels. Experimental results showcase the superior performance of WSGraphCL compared to several baseline models, thereby emphasizing its efficacy in addressing the identified limitations in HSI classification. The code repository will be published on the GitHub project under the URL: https://github.com/zhu-xlab/WSGraphCL

elib-URL des Eintrags:https://elib.dlr.de/214310/
Dokumentart:Zeitschriftenbeitrag
Titel:Weak–Strong Graph Contrastive Learning Neural Network for Hyperspectral Image Classification
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Wang, SiruiTechnical University of MunichNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ait Ali Braham, NassimDLRNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Xiao Xiang, ZhuTechnical University of MunichNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Mai 2025
Erschienen in:IEEE Transactions on Geoscience and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:63
DOI:10.1109/TGRS.2025.3562261
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:veröffentlicht
Stichwörter:Contrastive learning (CL), deep learning, graph neural networks (GNNs), hyperspectral image (HSI) classification, self-supervised learning (SSL)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Ait Ali Braham, Nassim
Hinterlegt am:06 Jun 2025 10:37
Letzte Änderung:06 Jun 2025 10:37

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.