Dutta, Sreejit und Huber, Sigurd und Krieger, Gerhard (2025) Integrating Quantum-Classical Algorithms with Tensor Networks for Noise Reduction in Synthetic Aperture Radar. Living Planet Symposium 2025, 2025-06-23 - 2025-06-27, Vienna, Austria.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Synthetic Aperture Radar (SAR) imaging is crucial in remote sensing due to its ability to produce high-resolution images regardless of weather conditions or daylight. However, SAR images often suffer from various types of noise, especially speckle noise, which degrades image quality and complicates data analysis. Traditional noise reduction techniques face challenges in balancing noise suppression with the preservation of image details. Recent deep learning approaches, such as U-Net architectures, have made strides in addressing these issues. Simultaneously, quantum computing has emerged as a promising field that can potentially enhance computational methods in image processing. We propose a hybrid classical-quantum U-Net framework that integrates quantum-classical algorithms with tensor networks for improved noise reduction in SAR images. Leveraging the representational capacity of tensor networks and the computational strengths of quantum algorithms, our method aims to surpass the limitations of classical techniques in managing complex noise patterns. In our architecture, certain layers of the U-Net are implemented using quantum circuits specifically optimized for noise suppression. The inclusion of tensor networks enables efficient handling of high-dimensional data within the hybrid model. The idea is to perform extensive experiments on standard SAR datasets to demonstrate that our hybrid U-Net outperforms traditional denoising methods and purely classical deep learning models in both noise reduction and detail preservation. Quantitative assessments using metrics like Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) would be used for comparison. Moreover, we will evaluate the computational efficiency of our approach, underscoring the potential of quantum computing to expedite complex image processing tasks. This work aims to highlight the feasibility and benefits of integrating quantum computing into practical remote sensing applications. Our hybrid quantum-classical U-Net architecture with tensor networks paves the way for advanced noise reduction techniques in SAR imaging and potentially other domains. Future research will focus on optimizing quantum circuit designs for specific noise types and exploring the scalability of our approach alongside advancements in quantum hardware.
elib-URL des Eintrags: | https://elib.dlr.de/214300/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
Titel: | Integrating Quantum-Classical Algorithms with Tensor Networks for Noise Reduction in Synthetic Aperture Radar | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Dezember 2025 | ||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Status: | akzeptierter Beitrag | ||||||||||||||||
Stichwörter: | Synthetic Aperture Radar, Quantum Computing, Machine Learning, Tensor Networks, Noise Reduction, Deep Learning, UNet, Image Processing, Tensor Decmposition | ||||||||||||||||
Veranstaltungstitel: | Living Planet Symposium 2025 | ||||||||||||||||
Veranstaltungsort: | Vienna, Austria | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 23 Juni 2025 | ||||||||||||||||
Veranstaltungsende: | 27 Juni 2025 | ||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
DLR - Schwerpunkt: | Quantencomputing-Initiative | ||||||||||||||||
DLR - Forschungsgebiet: | QC AW - Anwendungen | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | QC - QUA-SAR | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme > Radarkonzepte | ||||||||||||||||
Hinterlegt von: | Dutta, Sreejit | ||||||||||||||||
Hinterlegt am: | 23 Mai 2025 13:26 | ||||||||||||||||
Letzte Änderung: | 23 Mai 2025 13:26 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags