elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Towards Robust Collaborative DGNSS in the Presence of Outliers

Calatrava, Helena und Medina, Daniel und Closas, Pau (2025) Towards Robust Collaborative DGNSS in the Presence of Outliers. IEEE/ION Position, Location and Navigation Symposium 2025, 2025-04-28 - 2025-05-01, Salt Lake City, Utah, USA. (im Druck)

[img] PDF
1MB

Kurzfassung

This paper extends the code-based collaborative differential GNSS (C-DGNSS) framework to provide robustness under non-ideal conditions. The C-DGNSS functional model is integrated into the M-estimator based on Huber's loss function, aiming to improve positioning performance in the presence of heavy-tailed noise. Two key research aspects are addressed: (i) the impact of outliers on the performance of the C-DGNSS framework, particularly their effect on both users directly affected and those indirectly influenced through centralized processing, and (ii) the effectiveness of robust statistical methods in mitigating this impact. We conduct an experiment addressing multipath propagation in urban environments with limited satellite visibility and another focused on faulty measurements caused by jamming or Byzantine attacks. Results demonstrate the superior performance of the robust C-DGNSS framework, achieving a reduction in positioning root mean square error (RMSE) of up to 30 meters for urban users under moderate multipath conditions, and an improvement of over 25 meters in worst-case error when the central node receives severely faulty measurements. This is achieved while effectively preventing error propagation to unaffected users with favorable geometries, even in networks with a high proportion of faulty nodes. Ultimately, this work marks a pivotal step in redefining the limits of collaborative GNSS performance, proving that robust estimation can transform vulnerable networks into reliable systems.

elib-URL des Eintrags:https://elib.dlr.de/214159/
Dokumentart:Konferenzbeitrag (Vorlesung)
Titel:Towards Robust Collaborative DGNSS in the Presence of Outliers
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Calatrava, Helenacalatrava.h (at) northeastern.eduNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Medina, DanielDaniel.AriasMedina (at) dlr.dehttps://orcid.org/0000-0002-1586-3269NICHT SPEZIFIZIERT
Closas, Paupau.closas (at) northeastern.eduhttps://orcid.org/0000-0002-5960-6600NICHT SPEZIFIZIERT
Datum:April 2025
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:im Druck
Stichwörter:Differential GNSS, Collaborative Positioning, Robust Statistics, Multipath Mitigation
Veranstaltungstitel:IEEE/ION Position, Location and Navigation Symposium 2025
Veranstaltungsort:Salt Lake City, Utah, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:28 April 2025
Veranstaltungsende:1 Mai 2025
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Kommunikation, Navigation, Quantentechnologien
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R KNQ - Kommunikation, Navigation, Quantentechnologie
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt HIGAIN [KNQ], V - FuturePorts
Standort: Neustrelitz
Institute & Einrichtungen:Institut für Kommunikation und Navigation > Nautische Systeme
Hinterlegt von: Medina, Daniel
Hinterlegt am:16 Mai 2025 16:41
Letzte Änderung:16 Mai 2025 16:41

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.