Kuzu, Ridvan Salih und Zappacosta, Antony und Antropov, Oleg und Dumitru, Corneliu Octavian (2025) Enhancing Forest Change Detection Using Self-Supervised Learning with Multi-Source EO Data. In: European Geosciences Union (EGU) General Assembly, Seite 1. European Geosciences Union (EGU) General Assembly 2025, 2025-04-27 - 2025-05-02, Vienna, Austria.
![]() |
PDF
87kB |
Offizielle URL: https://meetingorganizer.copernicus.org/EGU25/EGU25-294.html
Kurzfassung
This study presents advancements in forest change detection by leveraging self-supervised learning (SSL) methods with multi-source and multi-temporal Earth Observation (EO) data. Transitioning from traditional bi-temporal approaches, the developed methodology incorporates multi-temporal analysis and multimodal data fusion using Sentinel-1, Sentinel-2, and PALSAR-2 imagery. Key innovations include mapping the magnitude of forest changes rather than binary classifications, enabling nuanced assessment of disturbance severity. Experiments demonstrate the effectiveness of SSL-pretrained backbones, such as ResNet architectures, in extracting features for change detection. The integration of multi-temporal Sentinel-1 time series further improved the reliability and accuracy of disturbance tracking over time. These advancements show the potential of SSL to enhance forest change monitoring, providing scalable solutions for continuous and precise assessment of forest dynamics.
elib-URL des Eintrags: | https://elib.dlr.de/214007/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Zusätzliche Informationen: | This is a disimination of the RepreSent project funded by ESA. | ||||||||||||||||||||
Titel: | Enhancing Forest Change Detection Using Self-Supervised Learning with Multi-Source EO Data | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 30 April 2025 | ||||||||||||||||||||
Erschienen in: | European Geosciences Union (EGU) General Assembly | ||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Seitenbereich: | Seite 1 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Forest, change detection, SSL | ||||||||||||||||||||
Veranstaltungstitel: | European Geosciences Union (EGU) General Assembly 2025 | ||||||||||||||||||||
Veranstaltungsort: | Vienna, Austria | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 27 April 2025 | ||||||||||||||||||||
Veranstaltungsende: | 2 Mai 2025 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Dumitru, Corneliu Octavian | ||||||||||||||||||||
Hinterlegt am: | 08 Mai 2025 14:08 | ||||||||||||||||||||
Letzte Änderung: | 08 Mai 2025 14:08 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags