An der Lan, Noah (2025) A-optimal Bayesian experiment design for identification of an initial gas distribution in an urban flow simulation. Bachelorarbeit, Technical University of Munich.
![]() |
PDF
- Nur DLR-intern zugänglich
13MB |
Kurzfassung
This thesis presents a method for determining an optimal experiment design (A-optimal experiment design) for the identification of pollutant sources. A well-known formulation for the determination of an A-optimal design is extended so that it can be applied to a real scenario, such as the release of pollutants in a chemical park. The solution of an incompressible Navier-Stokes equation system enables the determination of a wind simulation, which is then used to create a valid flow model for the pollutant transport with the help of the linear advection-diffusion equation. Using this model, it is possible to characterize the source of the pollutant, given by the initial condition of the advection-diffusion problem, by means of discrete pollutant measurements in space and time. Since sensor measurements are typically subject to a certain amount of noise, the use of a Bayesian formulation is advantageous, by means of which an adequate approximation of the original pollutant concentration can be derived in the form of a random distribution. This model ultimately results in a measure for the inaccuracies of the resulting system, which is dependent on the sensor positions. This measure can then be used to develop the A-optimal design. The work includes the mathematical modeling and the numerical implementation of an efficient solution to this problem.
elib-URL des Eintrags: | https://elib.dlr.de/213993/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Hochschulschrift (Bachelorarbeit) | ||||||||
Titel: | A-optimal Bayesian experiment design for identification of an initial gas distribution in an urban flow simulation | ||||||||
Autoren: |
| ||||||||
Datum: | 17 Februar 2025 | ||||||||
Open Access: | Nein | ||||||||
Seitenanzahl: | 66 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | contaminant transport, sensor placement, inverse problem, optimal experiment design | ||||||||
Institution: | Technical University of Munich | ||||||||
Abteilung: | School of Computation, Information and Technology | ||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||
HGF - Programm: | keine Zuordnung | ||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||
DLR - Schwerpunkt: | keine Zuordnung | ||||||||
DLR - Forschungsgebiet: | keine Zuordnung | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | keine Zuordnung | ||||||||
Standort: | Rhein-Sieg-Kreis | ||||||||
Institute & Einrichtungen: | Institut für den Schutz terrestrischer Infrastrukturen > Simulationsmethoden für Digitale Zwillinge Institut für den Schutz terrestrischer Infrastrukturen | ||||||||
Hinterlegt von: | Mattuschka, Marco | ||||||||
Hinterlegt am: | 07 Mai 2025 10:49 | ||||||||
Letzte Änderung: | 07 Mai 2025 10:49 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags