Strand, Sigrid Helene und Wiedemann, Thomas und Burczek, Bram und Shutin, Dmitriy (2025) Enhancing UAV Search under Occlusion using Next Best View Planning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2025.3638881. ISSN 1939-1404.
|
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://ieeexplore.ieee.org/document/11271526
Kurzfassung
Search and rescue missions are often critical following sudden natural disasters or in high-risk environmental situations. The most challenging search and rescue missions involve difficult-to-access terrains, such as dense forests with high occlusion. Deploying unmanned aerial vehicles for exploration can significantly enhance search effectiveness, facilitate access to challenging environments, and reduce search time. However, in dense forests, the effectiveness of unmanned aerial vehicles depends on their ability to capture clear views of the ground, necessitating a robust search strategy to optimize camera positioning and perspective. This work presents an optimized planning strategy and an efficient algorithm for the Next Best View problem in occluded environments. Two novel optimization heuristics, a geometry heuristic, and a visibility heuristic, are proposed to enhance search performance by selecting optimal camera viewpoints. Comparative evaluations in both simulated and real-world settings reveal that the visibility heuristic achieves greater performance, identifying over 90% of hidden objects in simulated forests and offering 10% better detection rates than the geometry heuristic. Additionally, real-world experiments demonstrate that the visibility heuristic provides better coverage under the canopy, highlighting its potential for improving search and rescue missions in occluded environments.
| elib-URL des Eintrags: | https://elib.dlr.de/213933/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
| Zusätzliche Informationen: | DFG Fund, WSASM | ||||||||||||||||||||
| Titel: | Enhancing UAV Search under Occlusion using Next Best View Planning | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | 1 Dezember 2025 | ||||||||||||||||||||
| Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||
| Gold Open Access: | Ja | ||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||
| DOI: | 10.1109/JSTARS.2025.3638881 | ||||||||||||||||||||
| Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
| ISSN: | 1939-1404 | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Aerial mapping, evolutionary algorithms, next best view, optimal experimental design, search and rescue, unmanned aerial vehicle | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Verkehr | ||||||||||||||||||||
| HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||
| DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
| DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | V - INTAS - Intelligente Ad-Hoc Sensornetzwerke | ||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nachrichtensysteme | ||||||||||||||||||||
| Hinterlegt von: | Strand, Sigrid Helene | ||||||||||||||||||||
| Hinterlegt am: | 17 Dez 2025 16:47 | ||||||||||||||||||||
| Letzte Änderung: | 18 Dez 2025 12:30 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags