elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Enhancing UAV Search under Occlusion using Next Best View Planning

Strand, Sigrid Helene und Wiedemann, Thomas und Burczek, Bram und Shutin, Dmitriy (2025) Enhancing UAV Search under Occlusion using Next Best View Planning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2025.3638881. ISSN 1939-1404.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
2MB

Offizielle URL: https://ieeexplore.ieee.org/document/11271526

Kurzfassung

Search and rescue missions are often critical following sudden natural disasters or in high-risk environmental situations. The most challenging search and rescue missions involve difficult-to-access terrains, such as dense forests with high occlusion. Deploying unmanned aerial vehicles for exploration can significantly enhance search effectiveness, facilitate access to challenging environments, and reduce search time. However, in dense forests, the effectiveness of unmanned aerial vehicles depends on their ability to capture clear views of the ground, necessitating a robust search strategy to optimize camera positioning and perspective. This work presents an optimized planning strategy and an efficient algorithm for the Next Best View problem in occluded environments. Two novel optimization heuristics, a geometry heuristic, and a visibility heuristic, are proposed to enhance search performance by selecting optimal camera viewpoints. Comparative evaluations in both simulated and real-world settings reveal that the visibility heuristic achieves greater performance, identifying over 90% of hidden objects in simulated forests and offering 10% better detection rates than the geometry heuristic. Additionally, real-world experiments demonstrate that the visibility heuristic provides better coverage under the canopy, highlighting its potential for improving search and rescue missions in occluded environments.

elib-URL des Eintrags:https://elib.dlr.de/213933/
Dokumentart:Zeitschriftenbeitrag
Zusätzliche Informationen:DFG Fund, WSASM
Titel:Enhancing UAV Search under Occlusion using Next Best View Planning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Strand, Sigrid Helenesigrid.strand (at) dlr.dehttps://orcid.org/0009-0008-7721-5620200033568
Wiedemann, ThomasThomas.Wiedemann (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Burczek, Brambram.burczek (at) gmail.comNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Shutin, DmitriyDmitriy.Shutin (at) dlr.dehttps://orcid.org/0000-0002-6065-6453200033569
Datum:1 Dezember 2025
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1109/JSTARS.2025.3638881
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:Aerial mapping, evolutionary algorithms, next best view, optimal experimental design, search and rescue, unmanned aerial vehicle
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - INTAS - Intelligente Ad-Hoc Sensornetzwerke
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Kommunikation und Navigation > Nachrichtensysteme
Hinterlegt von: Strand, Sigrid Helene
Hinterlegt am:17 Dez 2025 16:47
Letzte Änderung:18 Dez 2025 12:30

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.