elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Towards an Automated AI Based Simulation Framework in Aerospace Engineering

Ebrahimi Pour, Neda und Dressel, Frank und Roller, Sabine (2025) Towards an Automated AI Based Simulation Framework in Aerospace Engineering. In: 2025 International Conference on High Performance Computing in Asia-Pacific Region Workshops, HPC Asia 2025, Seiten 58-60. Association for Computing Machinery. Multi-scale, Multi-physics, Coupled Problems and AI enhanced simulations on HPC at HPC Asia 2025, 2025-02-19 - 2025-02-21, Hsinchu, Taiwan. doi: 10.1145/3703001.3724387. ISBN 9798400713422.

[img] PDF
468kB

Offizielle URL: https://doi.org/10.1145/3703001.3724387

Kurzfassung

In the aerospace industry, there is an increasing inclination to replace costly and time-consuming prototyping with computer simulations. These simulations are characterized by their complexity and the necessity of not only a proper physical representation, but also the capacity to meet time-to-solution expectations. Numerous specialized software packages have been developed in recent years, incorporating a range of numerical techniques. However, the majority of these packages are designed to address specific problems such as structural mechanics or computational fluid dynamics problems. Real-world applications, however, are more involved and require the consideration of coupling approaches, which allow the combination of available tools to realize complex and interdisciplinary simulations, involving not only multi-scales, but also multi-physics. In this regard, supercomputing systems are indispensable, as they allow the realization of complex problems. The main question persist, how to enhance the efficiency of computations beyond the scaling with increased computational resources. Hererby, machine learning has the potential to play a pivotal role by not only reducing the computation but also allow for predicting the numerical solutions that do not necessitate extensive hours of computing time on supercomputing systems. This, in turn, has the effect of significantly reducing the time to solution, which is an important factor from the industrial perspective. However, it is important to ensure the reproducibility and reliability of the predicted results for critical decision-making processes. The processes involved in such an approach are complex and data-driven. The incorporation of this approach requires not only the software itself, but also data, batching, preprocessing, and other related components, to utilize the training and validation of the machine learning algorithm. In this context, provenance emerges as a crucial element in the documentation of the entire process, from the initial configuration of a simulation to the prediction of results and the identification of the ultimate solution. In this work our goal is the utilization and integration of existing powerful tools in a framework, that enables accurate and efficient workflows for complex simulations in an automated manner. Moreover, the central aim is to facilitate complex simulations by making sustainable use of available software packages, without in-depth knowledge of the underlying algorithm.

elib-URL des Eintrags:https://elib.dlr.de/213911/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Towards an Automated AI Based Simulation Framework in Aerospace Engineering
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Ebrahimi Pour, NedaNeda.EbrahimiPour (at) dlr.dehttps://orcid.org/0000-0002-8167-7456183519515
Dressel, FrankFrank.Dressel (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Roller, SabineSabine.Roller (at) dlr.dehttps://orcid.org/0000-0003-1483-8456183519516
Datum:19 April 2025
Erschienen in:2025 International Conference on High Performance Computing in Asia-Pacific Region Workshops, HPC Asia 2025
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.1145/3703001.3724387
Seitenbereich:Seiten 58-60
Verlag:Association for Computing Machinery
Name der Reihe:Proceedings of the 2025 International Conference on High Performance Computing in Asia-Pacific Region Workshops
ISBN:9798400713422
Status:veröffentlicht
Stichwörter:Computing methodologies, Massively parallel, High-performance simulations, Massively parallel algorithms, Machine learning, Applied computing, Aerospace
Veranstaltungstitel:Multi-scale, Multi-physics, Coupled Problems and AI enhanced simulations on HPC at HPC Asia 2025
Veranstaltungsort:Hsinchu, Taiwan
Veranstaltungsart:Workshop
Veranstaltungsbeginn:19 Februar 2025
Veranstaltungsende:21 Februar 2025
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Effizientes Luftfahrzeug
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L EV - Effizientes Luftfahrzeug
DLR - Teilgebiet (Projekt, Vorhaben):L - Virtuelles Flugzeug und Validierung
Standort: Dresden
Institute & Einrichtungen:Institut für Softwaremethoden zur Produkt-Virtualisierung
Hinterlegt von: Ebrahimi Pour, Neda
Hinterlegt am:06 Mai 2025 12:31
Letzte Änderung:27 Jun 2025 09:16

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.