elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Preconditioned FEM-based neural networks for solving incompressible fluid flows and related inverse problems

Griese, Franziska und Hoppe, Fabian und Rüttgers, Alexander und Knechtges, Philipp (2025) Preconditioned FEM-based neural networks for solving incompressible fluid flows and related inverse problems. Journal of Computational and Applied Mathematics, 469. Elsevier. doi: 10.1016/j.cam.2025.116663. ISSN 0377-0427.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
1MB

Kurzfassung

The numerical simulation and optimization of technical systems described by partial differential equations is expensive, especially in multi-query scenarios in which the underlying equations have to be solved for different parameters. A comparatively new approach in this context is to combine the good approximation properties of neural networks (for parameter dependence) with the classical finite element method (for discretization). However, instead of considering the solution mapping of the PDE from the parameter space into the FEM-discretized solution space as a purely data-driven regression problem, so-called physically informed regression problems have proven to be useful. In these, the equation residual is minimized during the training of the neural network, i.e., the neural network learns the physics underlying the problem. In this paper, we extend this approach to saddle-point and non-linear fluid dynamics problems, respectively, namely stationary Stokes and stationary Navier-Stokes equations. In particular, we propose a modification of the existing approach: Instead of minimizing the plain vanilla equation residual during training, we minimize the equation residual modified by a preconditioner. By analogy with the linear case, this also improves the condition in the present non-linear case. Our numerical examples demonstrate that this approach significantly reduces the training effort and greatly increases accuracy and generalizability. Finally, we show the application of the resulting parameterized model to a related inverse problem.

elib-URL des Eintrags:https://elib.dlr.de/213626/
Dokumentart:Zeitschriftenbeitrag
Titel:Preconditioned FEM-based neural networks for solving incompressible fluid flows and related inverse problems
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Griese, FranziskaFranziska.Griese (at) dlr.dehttps://orcid.org/0000-0003-4116-2316182196039
Hoppe, Fabianfabian.hoppe (at) dlr.dehttps://orcid.org/0000-0002-4501-6829182196040
Rüttgers, AlexanderAlexander.Ruettgers (at) dlr.dehttps://orcid.org/0000-0001-6347-9272NICHT SPEZIFIZIERT
Knechtges, PhilippPhilipp.Knechtges (at) dlr.dehttps://orcid.org/0000-0002-4849-0593182196041
Datum:9 April 2025
Erschienen in:Journal of Computational and Applied Mathematics
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:469
DOI:10.1016/j.cam.2025.116663
Verlag:Elsevier
ISSN:0377-0427
Status:veröffentlicht
Stichwörter:FEM-based neural network Machine learning Preconditioning Finite elements Parametric PDEs Stokes Navier–Stokes
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Digitalisierung
DLR - Forschungsgebiet:D KIZ - Künstliche Intelligenz
DLR - Teilgebiet (Projekt, Vorhaben):D - PISA
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Softwaretechnologie > High-Performance Computing
Institut für Softwaretechnologie
Hinterlegt von: Knechtges, Philipp
Hinterlegt am:14 Apr 2025 12:29
Letzte Änderung:14 Apr 2025 12:29

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.