
Journal of Computational and Applied Mathematics 469 (2025) 116663

A
0
(

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

Preconditioned FEM-based neural networks for solving

incompressible fluid flows and related inverse problems
Franziska Griese , Fabian Hoppe , Alexander Rüttgers , Philipp Knechtges ∗

German Aerospace Center (DLR), Institute of Software Technology, High-Performance Computing
Department, Linder Höhe, Cologne, 51147, Germany

A R T I C L E I N F O

Keywords:
FEM-based neural network
Machine learning
Preconditioning
Finite elements
Parametric PDEs
Stokes
Navier–Stokes

 A B S T R A C T

The numerical simulation and optimization of technical systems described by partial differential
equations is expensive, especially in multi-query scenarios in which the underlying equations
have to be solved for different parameters. A comparatively new approach in this context is
to combine the good approximation properties of neural networks (for parameter dependence)
with the classical finite element method (for discretization). However, instead of considering
the solution mapping of the PDE from the parameter space into the FEM-discretized solution
space as a purely data-driven regression problem, so-called physically informed regression
problems have proven to be useful. In these, the equation residual is minimized during the
training of the neural network, i.e., the neural network ‘‘learns’’ the physics underlying the
problem. In this paper, we extend this approach to saddle-point and non-linear fluid dynamics
problems, respectively, namely stationary Stokes and stationary Navier–Stokes equations. In
particular, we propose a modification of the existing approach: Instead of minimizing the plain
vanilla equation residual during training, we minimize the equation residual modified by a
preconditioner. By analogy with the linear case, this also improves the condition in the present
non-linear case. Our numerical examples demonstrate that this approach significantly reduces
the training effort and greatly increases accuracy and generalizability. Finally, we show the
application of the resulting parameterized model to a related inverse problem.

1. Introduction

Understanding physical systems is crucial in many applications in science and engineering. Many important physical systems
are modeled by partial differential equations (PDEs) and then solved using numerical methods. A more recent approach to simulate
physical systems is to use neural networks (NNs) as surrogate models, which reduce complexity and speed up evaluation compared
to numerical methods. These deep neural networks are universal function approximators [1] and are typically trained with data from
simulations or measurements. However, generating data from experiments or simulations is expensive. In addition, a data-driven
approach does not or only insufficiently take into account natural laws such as the conservation of energy, mass and momentum,
thus generalizes poorly to unseen cases. To cope with these and similar issues, the field of physics-informed machine learning has
emerged at the intersection of (numerical) mathematics, machine learning/artificial intelligence, and computational engineering;
see, e.g., the surveys [2–5].

∗ Corresponding author.
E-mail addresses: franziska.griese@dlr.de (F. Griese), fabian.hoppe@dlr.de (F. Hoppe), alexander.ruettgers@dlr.de (A. Rüttgers), philipp.knechtges@dlr.de

(P. Knechtges).

https://doi.org/10.1016/j.cam.2025.116663
Received 21 August 2024; Received in revised form 28 February 2025
vailable online 5 April 2025
377-0427/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
 http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/cam
https://www.elsevier.com/locate/cam
https://orcid.org/0000-0003-4116-2316
https://orcid.org/0000-0002-4501-6829
https://orcid.org/0000-0001-6347-9272
https://orcid.org/0000-0002-4849-0593
mailto:franziska.griese@dlr.de
mailto:fabian.hoppe@dlr.de
mailto:alexander.ruettgers@dlr.de
mailto:philipp.knechtges@dlr.de
https://doi.org/10.1016/j.cam.2025.116663
https://doi.org/10.1016/j.cam.2025.116663
http://creativecommons.org/licenses/by/4.0/

F. Griese et al. Journal of Computational and Applied Mathematics 469 (2025) 116663
Among the numerous approaches to utilize the power of neural networks for solving differential equations, in particular so-called
physics-informed neural networks (PINNs), first introduced in [6,7] and brought to broad attention by [8], gained a lot of attention
in the last years. PINNs embed the residual of the respective differential equations into the loss function of a neural network and
compute the required derivatives exactly by automatic differentiation [9]. Hence, this approach is often considered to be able to
avoid direct discretization; in particular, it is clearly a mesh-free approach. Since training exploits the underlying physics, encoded
in the loss function, the PINN approach is able to solve a differential equation without the need for simulated or measured data.
However, as higher order derivatives of the network in the loss function lead to a high learning complexity, and additional loss
terms that incorporate boundary conditions lead to a multi-objective optimization problem (at least in the vanilla PINN approach),
training PINNs is known to be potentially challenging; see, e.g., [10]. For further literature dealing with PINNs, extensions thereof,
or similar techniques such as the Deep Ritz method, the Deep Nitsche method, and weak adversarial networks — all of these methods
have in common that they do not explicitly apply discretization — we refer to the aforementioned survey papers.

In the following, we focus our literature overview on physics-informed neural networks that make explicit use of discretization,
at least to a certain degree. The so-called variational PINNs (vPINNs), a Petrov–Galerkin-like approach, in which a neural network
serves as trial function that is tested with a set of finitely many test functions, are introduced in [11]. In the VarNet approach [12],
specifically finite element functions are used as test functions, and in ℎ𝑝-vPINNs [13] essentially ℎ𝑝-finite element functions are
used as test functions. In contrast, the Galerkin neural network approach [14] extends the classical Galerkin procedure, that is
usually bound to trial and test functions coming from linear spaces, to trial and test functions both coming from non-linear sets of
functions parameterized by neural networks. PhyGeoNet [15] maps the underlying problem to a rectangular reference domain and
then employs PINNs loss evaluated on a rectangular grid of points together with convolutional neural networks. Extending this idea
to less structured meshes, physics-informed graph neural Galerkin networks [16] combine graph convolutional NNs with a Galerkin
finite element method (FEM) discretization. In [17], finite element discretization is considered and the proposed network architecture
mimics subsequent refinement steps of the underlying mesh; moreover, a block Jacobi preconditioner is applied. In [18] a somehow
hybrid combination of PINNs and FEM-discretization is combined with preconditioning and applied to several model problems,
including stationary Navier–Stokes equations (with homogeneous boundary conditions): while the network still approximates the
non-discretized solution, it is only evaluated at grid points of a Lagrange FEM-discretization, and the loss functions for the training is
constituted in terms of the left-preconditioned FEM-residual. Nonlinear problems are treated by iteratively solving linear problems.
A model problem very similar to the one under consideration in the present paper is dealt with in [19] using classical PINNs again. A
so-called time-stepping-oriented training procedure, inspired by an control-theoretic ansatz to improve condition number of Jacobi
matrices, is employed and allows to deal with 3d problems up to Reynolds number 5,000. We see these results as an encouraging
sign that investigating the use of classical numerical techniques and ‘‘tricks’’ is promising in the context of physics-informed ML.

Recently, the use of PINNs has also been proposed to speed up certain element-local computations within a finite element
method [20], and neural networks have been used to correct coarse level FEM-solutions on a finer level; see, e.g., [21–23]. Finally,
a combination of Isogeometric Analysis with classical PINNs has been proposed in [24]. At the end of this overview, let us briefly
comment also on two methods with a similar title that are only slightly related to the present context. In [25], the differential
equation is discretized using classical FEM, while a neural network is used to parameterize an unknown parameter function in the
differential equation. In [26], the finite element method is cast into a neural network. The domain-decomposition-based (nonlinear)
preconditioning of the training of physics-informed neural networks developed in [27] refers to layer-parallel decomposition of the
respective neural networks.

Finally, [28,29] combine neural networks and finite elements directly: the parametric differential equation under consideration
is discretized a priori by finite elements, and a neural network is trained to map the parameters (of the differential equation) to
the coefficients of the corresponding discrete solution (w.r.t. the chosen finite element basis). The loss function is given by the
residual of the FEM-discretized differential equation, making this approach data-free and physics-informed. In [28] the applicability
to 1D-convection–diffusion problems, as well as to a truss problem, and in [29] to further elasticity problems, such as the
Euler–Bernoulli beam or the Reissner–Mindlin plate, has been demonstrated. For a discussion of the advantages of this approach
compared to PINNs, in particular the simplified handling of boundary conditions or irregularly shaped domains, we refer to [28].
While [28,29] are concerned with numerical parameters, an extension to a still fully discretized, but more operator-learning-like
scenario has been presented in [30] in the context of a time-dependent linear heat equation. Among the vast amount of literature on
operator learning [31], another popular method to address parametric problems, we mention exemplarily the recent contribution
on hypersonic flows [32].

In our opinion, combining the mathematically proven and quantified ability of FEMs to solve differential equations with the
strong approximation capabilities of neural networks to deal with parameter dependencies, should be considered as a simple, but
highly appealing idea. In the present work, we thus stick to this approach and extend it in two main directions:

1. First, we consider stationary 2D Stokes and Navier–Stokes equations, i.e., equations of type and characteristics that, given
their inherent saddle-point structure, are even for classical FEM quite challenging.

2. Second, we modify the physics-informed loss function by adding a preconditioner, from left and right, directly to the
(nonlinear) residual. In conjunction with L-BFGS, this significantly speeds up training and finally improves accuracy of the
obtained solutions.

It should be noted that preconditioning from both sides and solving the nonlinear problem all-at-once instead of solving a sequence
of linear problems distinguishes our approach from the preconditioning strategy proposed in [18]. Moreover, although the model
problem in [19] is very similar to ours, their ansatz for preconditioning is completely different from ours.
2

F. Griese et al. Journal of Computational and Applied Mathematics 469 (2025) 116663
Regarding the existing literature on physics-informed machine learning for fluid dynamics problems, we refer to the aforemen-
tioned survey papers on discretization-free approaches, and only comment on techniques that explicitly rely on discretization. The
neural network multigrid solver [21] already mentioned above has been applied to Navier–Stokes equations. DiscretizationNet [33]
combines finite volume discretization for the instationary Navier–Stokes equations together with an iterative application of an
encoder–decoder convolutional neural network, while [34] employ physics-informed loss evaluated on a grid together with a 3D
U-Net architecture for the neural network. Finally, we mention that beside these machine learning-based approaches, a large number
of classical model reduction techniques have been developed over the last decades, especially for applications in fluid dynamics;
see, e.g., [35].

Structure of the paper
In Section 2 we introduce the proposed method; first, we describe the underlying setting and the idea in general, and then we

discuss this approach in more detail on behalf of our two concrete model problems in Sections 2.3 and 2.4. Numerical examples
illustrating the advantages of our method are given in Section 3, and a prototypical application to probabilistic inverse problems is
presented in Section 4. We conclude the paper with a brief summary and outlook on future work in Section 5. Finally, the Appendix
contains the proof of a fact that can be understood as a heuristic motivation for the chosen approach.

2. Preconditioned loss functions for physics-informed, FEM-based neural networks

In this section, we introduce our proposed method and briefly discuss its realization, both first on an general, rather abstract
level. After that, we provide some more concrete details regarding its realization and implementation on the basis of two exemplary,
but non-trivial, model problems.

2.1. Problem statement

In the following, we will consider problems that can be written in the following abstract variational form:
Seek 𝑢 ∈ 𝑉 s.t. 𝑅(𝑢, 𝑣) = 0 ∀𝑣 ∈ 𝑉 , (1)

where 𝑉 denotes a suitable vector space1 and 𝑅∶𝑉 × 𝑉 → R is continuous and linear in the second argument, but not necessarily
bi- or trilinear. In fact, we will even consider the following parameterized version of (1):

Seek 𝑢(𝜆) ∈ 𝑉 s.t. 𝑅𝜆(𝑢(𝜆), 𝑣) = 0 ∀𝑣 ∈ 𝑉 , (2)

where 𝜆 ∈ 𝛬 ⊂ R𝑝 denotes a vector of parameters from a parameter range 𝛬 and each 𝑅𝜆 ∶𝑉 × 𝑉 → R satisfies the assumptions as
stated for (1). As the notation ‘‘𝑢(𝜆)’’ indicates, we will assume in the following that for each 𝜆 ∈ 𝛬 there is a unique 𝑢𝜆 ∈ 𝑉 that
satisfies (2) which makes the map 𝜆 ↦ 𝑢(𝜆) a well-defined map 𝛬 → 𝑉 .

Let now 𝑉ℎ ⊂ 𝑉 be a finite dimensional subspace, e.g., resulting from a conforming finite element discretization of 𝑉 ; the index ℎ
indicates the discretization parameter, e.g., the mesh size used for finite element discretization. The so-called Galerkin discretization
of our problem (2) is given by:

Seek 𝑢ℎ(𝜆) ∈ 𝑉ℎ s.t. 𝑅𝜆(𝑢ℎ(𝜆), 𝑣ℎ) = 0 ∀𝑣ℎ ∈ 𝑉ℎ. (3)

Again, we will assume without further notice that also this discrete problem is well-defined in the sense that for each 𝜆 ∈ 𝛬 there
is a unique 𝑢ℎ(𝜆) ∈ 𝑉ℎ satisfying (2). To obtain a more familiar notation, one may choose a basis 𝑣𝑖ℎ ∈ 𝑉ℎ, 𝑖 = 1,… , 𝑁ℎ, of 𝑉ℎ such
that 𝑢ℎ(𝜆) =

∑𝑁ℎ
𝑖=1 𝐮

𝑖
ℎ(𝜆)𝑣

𝑖
ℎ is satisfied with a (parameter-dependent) coefficient vector 𝐮ℎ(𝜆) ∈ R𝑁ℎ . Then, it suffices to test (3) with

𝑣ℎ = 𝑣𝑖ℎ for 𝑖 = 1,… , 𝑁ℎ and one obtains a system of 𝑁ℎ equations for 𝐮ℎ(𝜆):

Seek 𝐮ℎ(𝜆) ∈ R𝑁ℎ s.t. 𝐑𝜆,ℎ(𝐮ℎ(𝜆)) ∶=
(

𝑅𝜆
(

𝑢ℎ(𝜆), 𝑣𝑖ℎ
))

𝑖=1,…,𝑁ℎ
= 𝟎. (4)

2.2. Proposed method

Since (4) is a possibly nonlinear system of equations, usually consisting of a high number of variables, solving (4) for several
choices of 𝜆 may become costly. To deal with this issue, we propose a method that makes use of the strong approximation capabilities
of neural networks. More precisely, we want to approximate the map 𝜆 ↦ 𝐮ℎ(𝜆) solving (4) by a neural network 𝐮𝜃ℎ,NN ∶R𝑝 → R𝑁ℎ ;
hereby, 𝜃 denotes the network parameters of the neural network. Training this neural network — or in other words: finding the
right parameters 𝜃 that make 𝐮𝜃ℎ,NN a hopefully good approximation of 𝜆 ↦ 𝐮ℎ(𝜆) — requires to determine a suitable so-called loss
function. Previous work [28] has suggested to use the 𝓁2-norm of the discrete equation residual, i.e., to determine 𝜃 = argmin𝜗
of

 ∶= 1
|𝛬train|

∑

𝜆∈𝛬train

‖𝐑𝜆,ℎ(𝐮𝜗ℎ,NN(𝜆))‖
2
𝓁2
, (5)

1 𝑉 is usually a space of functions of a certain regularity, e.g., a Sobolev space.
3

F. Griese et al. Journal of Computational and Applied Mathematics 469 (2025) 116663
Fig. 1. Schematic of FEM-based neural networks.

where 𝛬train ⊂ 𝛬 denotes a finite subset used as training data. In this paper we propose a slightly different approach, denoting our
NN output as �̃�𝜗ℎ,NN(𝜆), we determine 𝜃 = argmin𝜗 𝐏𝐡 via

𝐏𝐡 ∶= 1
|𝛬train|

∑

𝜆∈𝛬train

‖𝐏𝐿
𝜆,ℎ𝐑𝜆,ℎ(𝐏𝑅

𝜆,ℎ�̃�
𝜗
ℎ,NN(𝜆))‖

2
𝓁2
, (6)

with 𝐏𝐿
𝜆,ℎ,𝐏

𝑅
𝜆,ℎ ∈ R𝑁ℎ×𝑁ℎ being the left, and respectively right, preconditioners. The desired 𝐮𝜃ℎ,NN(𝜆) can then be reobtained via

𝐮𝜃ℎ,NN(𝜆) = 𝐏𝑅
𝜆,ℎ�̃�

𝜃
ℎ,NN(𝜆). Of course, such a preconditioner must be chosen carefully taking into account the problem characteristics. As

already mentioned in the introduction, we directly apply preconditioning the possibly nonlinear residual, which is in contrast to [18]
where nonlinear problems are treated by solving linear problems in iterative manner. Moreover, unlike in [18] we precondition from
both sides.

Fig. 1 shows a schematic illustration of how FEM-based neural networks can be implemented in practice on a general level.
The neural network takes the parameter vector 𝜆 as input and produces �̃�𝜃ℎ,NN(𝜆) as output. During training, the FEM module needs
to carry out the calculation of the preconditioned residual 𝐏𝐿

𝜆,ℎ𝐑𝜆,ℎ◦𝐏𝑅
𝜆,ℎ, either directly and all-at-once, or by calculating/applying

the residual and the preconditioners separately; from these quantities the preconditioned loss function 𝐏ℎ is computed. During
inference, the FEM module only needs to provide the right-preconditioner 𝐏𝑅

𝜆,ℎ in order to allow the computation of 𝐮𝜃ℎ,NN(𝜆) from
the NN output �̃�𝜃ℎ,NN(𝜆).

To optimize the loss function w.r.t. the neural network parameters 𝜃, usually variants of the gradient descent method, such
as the Adam optimizer [36], or quasi-Newton methods, such as the limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)
algorithm [37] are employed. These methods require the gradient of the loss function with respect to the network parameters, which
is calculated by using automatic differentiation (AD) [9]; thus all computations in the FEM Module, such as, e.g., setting up stiffness
and/or mass matrices etc., must be implemented automatically differentiable. In this paper we will solely employ L-BFGS. Like
most optimizers popular in deep learning, L-BFGS only requires gradients of the objective function, i.e., first-order information, and
thus avoids the expensive computation of second-order derivatives by AD, which would be necessary for second-order methods as,
e.g., Newton’s method. Nevertheless, as a quasi-Newton method, L-BFGS lies somewhere between first- and second-order methods
as it is able to exploit curvature information by successively building an approximation to the inverse Hessian matrix during the
iteration. The associated hopes for faster convergence have been confirmed, e.g., in the case of classic PINNs [8].

Our desire of preconditioning the problem is also largely driven by this choice of optimizer. Since [38] it is known that BFGS for
a quadratic loss function and using perfect line search yields the same iterates as a CG algorithm. Since the CG algorithm is known
to have a convergence rate that is highly dependent on the condition number of the Hessian, it seems desirable to precondition the
optimization problem. In fact, if 𝐑𝜆,ℎ(𝐏𝑅

𝜆,ℎ�̃�
𝜃
ℎ,NN(𝜆)) = 0 (or ≈ 0, respectively) for 𝜆 ∈ 𝛬train, it holds that

∇2
𝜃𝐏ℎ (𝜃) =

2
|𝛬train|

∑

𝜆
𝐻𝑇

𝜆 𝐻𝜆

(or that ∇2
𝜃𝐏ℎ (𝜃) is dominated by this term, respectively) with

𝐻𝜆 = 𝐏𝐿
𝜆,ℎ ⋅ [𝐷𝐮𝐑𝜆,ℎ](𝐏𝑅

𝜆,ℎ�̃�
𝜃
ℎ,NN(𝜆)) ⋅ 𝐏

𝑅
𝜆,ℎ ⋅𝐷𝜃 �̃�𝜃ℎ,NN(𝜆).

Hence, we hope to improve the conditioning of the Hessian of 𝐏ℎ at some minimizer 𝜃 by choosing 𝐏𝐿
𝜆,ℎ, 𝐏𝑅

𝜆,ℎ in such a way that the
condition number of 𝐏𝐿

𝜆,ℎ ⋅ [𝐷𝐮𝐑𝜆,ℎ](𝐏𝑅
𝜆,ℎ�̃�

𝜃
ℎ,NN(𝜆)) ⋅𝐏

𝑅
𝜆,ℎ becomes relatively small. Even if these considerations by no means constitute

a strict proof, we consider them to be a conclusive motivation for our approach, and our numerical observations in Section 3 seem
to support this.
4

F. Griese et al. Journal of Computational and Applied Mathematics 469 (2025) 116663
Fig. 2. Coarse triangular mesh around the NACA 0012 airfoil.

2.3. Example 1: Stokes equations in 2D

In the following, we show some more concrete details regarding the realization and implementation of the proposed FEM-based
neural network for solving the Stokes flow around an airfoil with a parameterizable angle of attack. We consider the problem in a
2-dimensional Lipschitz-bounded domain 𝛺, where the Stokes problem consists of finding two functions, the velocity 𝑢(𝜆) ∶ 𝛺 → R2

and the pressure 𝑝(𝜆) ∶ 𝛺 → R such that
−𝛥𝑢(𝜆) + ∇𝑝(𝜆) = 𝑓𝜆, (7)

∇ ⋅ 𝑢(𝜆) = 𝑔𝜆, (8)

with functions 𝑓𝜆 ∶ 𝛺 → R2, 𝑔𝜆 ∶ 𝛺 → R and suitable boundary conditions, which will be introduced precisely below. Eq. (7)
represents the conservation of momentum, Eq. (8) the conservation of mass. Of course, depending on the regularity of the formulation
one seeks, these equations can be understood in a strong sense, almost everywhere, or, if 𝑓, 𝑔 become distributions, in a distributional
sense.

For the sake of simplicity we will focus in the following on 𝑓 ∈ 𝐿2(𝛺)2 and 𝑔 ∈ 𝐿2(𝛺), and choose function spaces 𝑋 = {𝑥 ∈
𝐻1(𝛺)2|𝑥|𝜕𝛺𝐷

= 0} for velocity and 𝑀 = 𝐿2(𝛺) for pressure. Here, 𝜕𝛺𝐷 is supposed to signify the Dirichlet boundary, which shall
not comprise the entire boundary 𝜕𝛺. For the time being, we impose zero as the Dirichlet boundary condition for the velocity,
which will be alleviated later on.

A weak formulation of the system (7)–(8) with a conforming Galerkin ansatz space 𝑉ℎ ∶= 𝑋ℎ×𝑀ℎ ⊂ 𝑋×𝑀 then reads as follows:

⎧

⎪

⎨

⎪

⎩

Seek 𝑢ℎ ∈ 𝑋ℎ and 𝑝ℎ ∈ 𝑀ℎ such that
𝑎(𝑢ℎ, 𝑣ℎ) + 𝑏(𝑣ℎ, 𝑝ℎ) = 𝑓 (𝑣ℎ) ∀𝑣ℎ ∈ 𝑋ℎ,

𝑏(𝑢ℎ, 𝑞ℎ) = 𝑔(𝑞ℎ) ∀𝑞ℎ ∈ 𝑀ℎ,
(9)

with the bilinear forms 𝑎(𝑢ℎ, 𝑣ℎ) ∶= ∫𝛺 ∇𝑢ℎ ∶ ∇𝑣ℎ and 𝑏(𝑣ℎ, 𝑝ℎ) ∶= − ∫𝛺 𝑝ℎ∇ ⋅ 𝑣ℎ. The two functionals 𝑓 and 𝑔 are defined as
𝑓 (𝑣ℎ) ∶= ∫𝛺 𝑣ℎ𝑓𝜆 and 𝑔(𝑞ℎ) ∶= − ∫𝛺 𝑞ℎ𝑔𝜆, respectively. 𝑅𝜆 is accordingly defined as the residual of Eq. (9). Note that the fully
continuous variant, that is, setting 𝑋ℎ = 𝑋 and 𝑀ℎ = 𝑀 , defines a well-posed problem [39, Prop. 4.7]. However, to obtain a well-
posed problem in the discrete setting, the discrete problem must satisfy the Ladyzhenskaya–Babus̆ka–Brezzi (LBB) condition [40–42]
and hence, the choice of 𝑋ℎ,𝑀ℎ must be handled with care. We use Taylor–Hood mixed finite elements, i.e., continuous, piecewise
linear ansatz functions for the pressure and continuous, piecewise quadratic ansatz functions for the velocity. With this choice of
𝑉ℎ, the LBB condition for (9) is satisfied and we obtain a well-posed discrete problem [39, Lemma 4.23].

Let {𝑣𝑖ℎ}1≤𝑖≤𝑁𝑢
, {𝑞𝑖ℎ}1≤𝑖≤𝑁𝑝

 be a basis for 𝑋ℎ,𝑀ℎ, with 𝑁𝑢, 𝑁𝑝 the respective dimension of the corresponding subspace. When
defining 𝐮 = (𝐮1,… ,𝐮𝑁𝑢

)𝑇 with 𝑢ℎ =
∑𝑁𝑢

𝑖=1 𝐮𝑖𝑣
𝑖
ℎ ∈ 𝑋ℎ and 𝐩 = (𝐩1,… ,𝐩𝑁𝑝

) with 𝑝ℎ =
∑𝑁𝑝

𝑖=1 𝐩𝑖𝑞
𝑖
ℎ ∈ 𝑀ℎ, we obtain the residual

𝐑𝜆,ℎ(𝐮,𝐩) =
[

𝐀 𝐁𝑇

𝐁 𝟎

] [

𝐮
𝐩

]

−
[

𝐟
𝐠

]

, (10)

with 𝐀𝑖,𝑗 = 𝑎(𝑣𝑗ℎ, 𝑣
𝑖
ℎ) ∈ R𝑁𝑢 ,𝑁𝑢 , 𝐁𝑘,𝑖 = 𝑏(𝑣𝑖ℎ, 𝑞

𝑘
ℎ) ∈ R𝑁𝑝 ,𝑁𝑢 , 𝐟𝑖 = 𝑓 (𝑣𝑖ℎ) ∈ R𝑁𝑢 and 𝐠𝑘 = 𝑔(𝑞𝑘ℎ) ∈ R𝑁𝑝 . The matrix 𝐀 is symmetric positive

definite and the system matrix in (10) symmetric, indefinite, and exhibits a typical saddle point structure. For such kind of linear
systems, a basic block diagonal preconditioner is given by

[

𝐀 𝟎
𝟎 −𝐒

]−1

, where 𝐒 = −𝐁𝐀−1𝐁𝑇 is the so-called Schur complement; see,
e.g., [43]. Since 𝐀 and −𝐒 are symmetric positive definite, we can use their Cholesky decompositions 𝐀 = 𝐋𝐋𝑇 and −𝐒 = 𝐌𝐌𝑇 to
define our two preconditioners by

𝐏𝐿
𝜆,ℎ =

[

𝐋−1 𝟎
−1

]

, 𝐏𝑅
𝜆,ℎ =

[

𝐋𝑇 𝟎
𝑇

]

. (11)
𝟎 𝐌 𝟎 𝐌

5

F. Griese et al. Journal of Computational and Applied Mathematics 469 (2025) 116663
Hence, we obtain the preconditioned residual introduced in Section 2 as follows:

𝐏𝐿
𝜆,ℎ𝐑𝜆,ℎ(𝐮,𝐩) =

[

𝐋𝑇 𝐋−1𝐁𝑇

𝐌−1𝐁 𝟎

] [

𝐮
𝐩

]

−
[

𝐋−1𝐟
𝐌−1𝐠

]

=
[

𝐈 𝐋−1𝐁𝑇𝐌−𝑇

𝐌−1𝐁𝐋−𝑇 𝟎

] [

𝐋𝑇 𝐮
𝐌𝑇 𝐩

]

−
[

𝐋−1𝐟
𝐌−1𝐠

]

,

=
[

𝐈 𝐋−1𝐁𝑇𝐌−𝑇

𝐌−1𝐁𝐋−𝑇 𝟎

] [

�̃�
�̃�

]

−
[

𝐋−1𝐟
𝐌−1𝐠

]

, (12)

where 𝐈 is the identity matrix and �̃� ∶= 𝐋𝑇 𝐮, �̃� ∶= 𝐌𝑇 𝐩, i.e.,
[

�̃�
�̃�

]

= 𝐏𝑅
𝜆,ℎ

[

𝐮
𝐩

]

.

Lemma 2.1 in [44] shows that the conditioning of the plain saddle point problem (10) is bounded from below by the conditioning
of the discretization of the Laplacian. As such, classical FEM theory [39, Theorem 9.14] shows that for a Lagrange finite element,
as we have chosen for the velocity discretization, the conditioning scales with ℎ−2. Therefore, it is usually necessary to apply
preconditioning to the simple saddle-point problem. In fact, the condition number of the square of the preconditioned stiffness
matrix in (12) is bounded independently of the discretization, as shown in the Appendix. There, it is even shown that the number
of distinct eigenvalues of this matrix is three. Considering again that BFGS with perfect line search is equivalent to CG for quadratic
optimization problems [38], BFGS applied to such an quadratic optimization problem with the squared preconditioned matrix as
its Hessian, would converge in at most three iterations2. Of course, these properties do not directly transfer to our setting, as the
problem under consideration is highly non-linear and non-convex due to the presence of a neural network. Nevertheless, it does
not seem unreasonable to assume that applying the preconditioner to the linear part of the problem will lead to at least a gradual
improvement of the overall properties in this case as well. In fact, our numerical examples in Section 3 support this.

Let us now turn to the explicit numerical example, where we want to solve the Stokes Eqs. (7)–(8) with source terms 𝑓𝜆 = 0, 𝑔𝜆 = 0,
and non-homogeneous Dirichlet boundary conditions. We define the domain 𝛺 as (0, 5)2 with a NACA 0012 airfoil [46] of length
one cut out in the center (see Fig. 2). A Dirichlet boundary condition dependent on the angle of attack 𝜆 is used at the inflow
boundary 𝜕𝛺+ ∶= {(𝑥, 𝑦) | 𝑥 = 0 or 𝑦 = 0}, a Neumann boundary condition at the outflow boundary 𝜕𝛺− ∶= {(𝑥, 𝑦) | 𝑥 = 5 or 𝑦 = 5}
and a no-slip boundary condition at the airfoil boundary 𝜕𝛺𝐴:

𝑢 = [cos(𝜆𝜋∕180), sin(𝜆𝜋∕180)]𝑇 on 𝜕𝛺+,

𝑝 − 𝜕𝜈𝑢 = 0 on 𝜕𝛺−,

𝑢 = 0 on 𝜕𝛺𝐴.

Here 𝜕𝜈 signifies the partial derivative in normal direction on the boundary. Note that the homogeneous Neumann boundary
condition on the outflow boundary effectively sets the mean outflow pressure to zero.

Fig. 2 shows the triangular mesh used in the experiments. As we expect larger changes closer to the airfoil, the mesh closer to
the airfoil is finer than at the outer edge. We use 2 × 3193 degrees of freedom for the velocity and 839 degrees of freedom for the
pressure, which corresponds to 7225 degrees of freedom in total.

Homogeneous Neumann boundary conditions are known to be so-called natural conditions and thus included in (10) by
construction, and do not need any special treatment. However, our aforementioned theory assumes homogeneous Dirichlet boundary
conditions for the velocity as well. In order to enforce the inhomogeneous boundary conditions, we will implicitly construct a lifting
function: Firstly, we assemble all the matrices and residuals oblivious to the Dirichlet boundary conditions. Secondly, we exploit
that the chosen basis functions are Lagrangian, i.e., each basis function 𝑣𝑖ℎ has an associated Lagrangian node 𝑥𝑖 ∈ 𝜕𝛺 such that

𝑣𝑖ℎ(𝑥𝑗) = 𝛿𝑖𝑗 ∀𝑖, 𝑗. (13)

The Dirichlet boundary conditions are now enforced on all such 𝑥𝑗 ∈ 𝜕𝛺+ ∪ 𝜕𝛺𝐴 by adjusting the right-hand side vector 𝐟 and the
stiffness matrix in (10) accordingly: First, we multiply the columns of the stiffness matrix corresponding to the boundary nodes by
the specified boundary values and then subtract the result from 𝐟 . Next, we set the corresponding values of 𝐟 to the boundary values.
In the stiffness matrix we modify the rows and columns corresponding to the boundary nodes so that the diagonal value is unity and
the off-diagonal entries are set to zero. Note that this is done before preconditioning, which is possible because the modifications
do not affect the symmetry properties of the system (10).

In the present case, the (preconditioned) stiffness matrix and right hand side vector of the residual (10) are independent of the
prediction of the neural network. Thus they need to be calculated only once and can be reused for every loss calculation in the
training of the neural network.

It is also noteworthy that, by the aforementioned approach of incorporating the Dirichlet boundary conditions, we obtain in
principle a single objective, avoiding the issues of weakly imposing the Dirichlet conditions via an additional objective term.
However, we believe that avoiding the multi-objective scenario is not per se an issue, as one could also rewrite our objective with
multiple terms. In our view, the more important part is that these potentially additional terms that impose the Dirichlet conditions
must be mutually non-conflicting. We explicitly ensure this by erasing parts of the assembled stiffness matrix and adequately
modifying the source terms, as mentioned above.

2 The situation is analogous to the Schur-preconditioned stable FEM solutions of the Stokes problem, when solved with Krylov subspace methods, such as
MINRES, cf. [45, p. 292].
6

F. Griese et al. Journal of Computational and Applied Mathematics 469 (2025) 116663
Fig. 3. Loss values per L-BFGS iteration when training FEM-based NNs with preconditioning (pre) and without preconditioning (nopre) for Stokes (S) and
Navier–Stokes (NS) equations with an angle of attack 𝜆 = 1◦ and different viscosities 𝜂.

2.4. Example 2: Stationary Navier–Stokes equations in 2D

To avoid redundancies, we focus on the changes that are necessary to extend our approach from the Stokes to the Navier–Stokes
equations. Thus, details not discussed further remain the same as in the previous section. The Navier–Stokes equations are as follows:

−𝜂𝛥𝑢(𝜆) + 𝑢(𝜆) ⋅ ∇𝑢(𝜆) + ∇𝑝(𝜆) = 𝑓𝜆, (14)

∇ ⋅ 𝑢(𝜆) = 𝑔𝜆, (15)

i.e., compared to the Stokes Eqs. (7)–(8) in particular the non-linear convection term 𝑢(𝜆) ⋅ ∇𝑢(𝜆) has been added. Moreover, we
have introduced the so-called kinematic viscosity 𝜂 > 0 as additional parameter. Discretization leads to

⎧

⎪

⎨

⎪

⎩

Seek 𝑢ℎ ∈ 𝑋ℎ and 𝑝ℎ ∈ 𝑀ℎ such that
𝑎(𝑢ℎ, 𝑣ℎ) + 𝑐(𝑧ℎ; 𝑢ℎ, 𝑣ℎ) + 𝑏(𝑣ℎ, 𝑝ℎ) = 𝑓 (𝑣ℎ) ∀𝑣ℎ ∈ 𝑋ℎ,

𝑏(𝑢ℎ, 𝑞ℎ) = 𝑔(𝑞ℎ) ∀𝑞ℎ ∈ 𝑀ℎ,
(16)

with 𝑏 as before, 𝑎 as before but multiplied by 𝜂, and the trilinear form 𝑐(𝑧ℎ; 𝑢ℎ, 𝑣ℎ) = ∫𝛺(𝑧ℎ ⋅∇𝑢ℎ) ⋅𝑣ℎ originating from the nonlinear
term. We again use Taylor–Hood elements for the discretization in the non-linear case, as these are already necessary for a stable
solution in the linear case. To formulate the corresponding nonlinear algebraic equation, we utilize Lagrangian basis functions as
in (10) and obtain the discrete residual

𝐑𝜆,ℎ(𝐮,𝐩) =
[

𝐀 + 𝐂(𝐮) 𝐁𝑇

𝐁 𝟎

] [

𝐮
𝐩

]

−
[

𝐟
𝐠

]

, (17)

with 𝐂(𝐮)𝑖,𝑗 = 𝑐(𝑢ℎ; 𝑣
𝑗
ℎ, 𝑣

𝑖
ℎ) ∈ R𝑁𝑢 ,𝑁𝑢 . We use the same preconditioning as for the Stokes problem, which yields the preconditioned

system

𝐏𝜆,ℎ𝐑𝜆,ℎ(𝐮,𝐩) =
[

𝐈 + 𝐋−1𝐂(𝐮)𝐋−𝑇 𝐋−1𝐁𝑇𝐌−𝑇

𝐌−1𝐁𝐋−𝑇 𝟎

] [

𝐋𝑇 𝐮
𝐌𝑇 𝐩

]

−
[

𝐋−1𝐟
𝐌−1𝐠

]

. (18)

Again we use the NN to directly predict �̃� ∶= 𝐋𝑇 𝐮 and �̃� ∶= 𝐌𝑇 𝐩. In our numerical examples we will solve the Navier–Stokes
Eqs. (14)–(15) on the same geometry, mesh, and boundary conditions as in the previous section.

Since the Navier–Stokes problem is nonlinear, the stiffness matrix depends on the solution, i.e., the prediction of the NN in our
case. This means that unlike in (12), where the system matrix and the right hand side could be calculated once in advance, we
now have to recalculate parts of the residual (18) in every L-BFGS iteration during the training of the network. More precisely, this
applies to the convection term 𝐂(𝐮) and the right hand side vector 𝐟 due to the inclusion of Dirichlet boundary conditions as we
will describe below. We note that

𝐂𝑖𝑗 (𝐮) = ∫𝛺

∑

𝑘
𝐮𝑘𝑣𝑘ℎ ⋅ ∇𝑣

𝑗
ℎ ⋅ 𝑣

𝑖
ℎ =

∑

𝑘
𝐮𝑘 ∫𝛺

𝑣𝑘ℎ ⋅ ∇𝑣
𝑗
ℎ ⋅ 𝑣

𝑖
ℎ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶�̃�𝑖,𝑗,𝑘

,

i.e., 𝐂(𝐮) can be calculated by a contraction of the tensor 𝐮 = 𝐋−𝑇 �̃� (or 𝐮 = �̃� in the case of no preconditioning) with a 3D-tensor �̃�
that is independent of 𝐮 and thus can be precomputed and reused. Since �̃� is sparse, this can be done in a memory-efficient manner.

Let us now briefly comment on enforcing Dirichlet boundary conditions in the residual (17). Except for the nonlinear part, 𝐂(𝐮),
this can be handled in the same way as for the Stokes equations. The only difference is that instead of 𝐂(𝐮) we actually have to
compute 𝐂(�̂�) with the slightly modified argument �̂� = �̂�(𝐮) in which the respective boundary conditions are already enforced at all
7

F. Griese et al. Journal of Computational and Applied Mathematics 469 (2025) 116663
Fig. 4. Eigenvalues of the Hessian of the loss function, evaluated after training the FEM-based NNs with preconditioning (pre) and without preconditioning
(nopre) for Stokes equations with an angle of attack 𝜆 = 1◦. Eigenvalues are shown in gray, a kernel density estimate of the respective distribution functions in
blue and orange. Note that the 𝑦-axis employs symmetric log axis scaling, i.e. logarithmic scaling with a linear scaling exception for values within [−2, 2].

Lagrange nodes on the Dirichlet boundary, i.e.,

�̂�𝑖 ∶=
{

𝐮𝑖 if 𝑥𝑖 ∉ 𝜕𝛺+ ∪ 𝜕𝛺𝐴,
𝑢BC(𝑥𝑖) if 𝑥𝑖 ∈ 𝜕𝛺+ ∪ 𝜕𝛺𝐴,

(19)

where 𝑢BC(𝑥𝑖) denotes the value of 𝑢 prescribed at the boundary node 𝑥𝑖. As for the Stokes equations, the boundary conditions are
included into (17) before preconditioning. With these changes, the training of the FEM-based NN can be carried out as described
above.

3. Numerical results

In the following, we show results of the proposed FEM-based neural networks for solving the Stokes and Navier–Stokes flow
around an airfoil with a parameterizable angle of attack as described in Section 2. In particular, we will focus on the comparison
between using a preconditioner and not using a preconditioner.

The respective neural networks and an FEM module as described in Sections 2, 2.3, and 2.4 have been implemented in
PyTorch [47]. Unless stated otherwise, the neural networks are plain vanilla feed forward networks consisting of five hidden layers
with 50 neurons each and an output layer whose size is equal to the number of degrees of freedom of the discretization. When
testing various hyperparameters, we found that small changes in the number of layers and number of neurons per layer did not
have a major effect on the results. However, it turned out that a non-linear activation function which is not bounded is of great
advantage to avoid local minima during optimization, which is why we use SELU [48] as the activation function except for the last,
linear layer. To facilitate efficient training, we set the network weights with Xavier’s normal initialization [49] scaled by 3∕4. For
the training, we use PyTorch’s implementation3 of L-BFGS. To make the results more comparable with ‘‘classical’’ implementations,
we choose max_iter=1 to ensure that only one L-BFGS step is performed per iteration. Furthermore, we choose a line search
within L-BFGS that seeks a solution that fulfills the strong Wolfe condition.

In the following, the term ‘‘error’’ does not refer to the discretization error, but to the error between our NN-based solution
and a pure FEM-based reference solution that uses the same mesh and Taylor–Hood discretization. The latter was computed with
FEniCSx [50,51].

3.1. The non-parametric case

We start with experiments with only a single angle of attack as training data and use a linear NN consisting of only one input
and one output layer. Considering this non-parametric and thus highly underdetermined case allows us to evaluate the benefits of
preconditioning separately from other effects.

Both the preconditioned and the non-preconditioned NNs are trained and evaluated for a single angle of attack 𝜆 = 1◦ and 40000
L-BFGS iterations, for each: the Stokes problem and the Navier–Stokes equation. In the latter case, the solutions are computed with
viscosities 𝜂 = 1 and 𝜂 = 0.1. Fig. 3 shows that in all these cases preconditioning significantly speeds up the training in terms of a
drastically reduced number of iterations. For the preconditioned cases we can even observe a stagnation of the residual at levels
that are probably related to numerical accuracy; this is probably related to a similar reason as the effect described in the paragraph
below (12) in Section 2.3. Fig. 5 shows for the Navier–Stokes equation with 𝜂 = 1.0 that training is also much faster in terms of
runtime because the very significant reduction in the number of iterations more than offsets the minimal increase in the runtime of
a single iteration that is due to the few additional operations related to preconditioning.

3 https://pytorch.org/docs/stable/generated/torch.optim.LBFGS.html [Accessed August 21, 2024].
8

https://pytorch.org/docs/stable/generated/torch.optim.LBFGS.html

F. Griese et al. Journal of Computational and Applied Mathematics 469 (2025) 116663
Fig. 5. Loss values over time, in logarithmic scaling, when training FEM-based NNs with preconditioning (pre) and without preconditioning (nopre) for the
Navier–Stokes (NS) equations with an angle of attack 𝜆 = 1◦ and viscosity 𝜂 = 1.0. The initial construction times of the system matrices in (17) and (18) are
shown in cyan, the training times of the iterations in purple.

Table 1
Relative errors of the FEM-based neural network trained for Stokes (S) and Navier–Stokes (NS) using the non-preconditioned loss (5) (nopre) and the preconditioned
loss (6) (pre) with an angle of attack of 1◦ and viscosity 𝜂.
 Pre. 𝜂 𝐿2-Error 𝐿∞-Error

 𝑢𝑥 𝑢𝑦 𝑝 𝑢𝑥 𝑢𝑦 𝑝

 S nopre – 6.0801e−03 2.5899e−02 8.6753e−02 7.6672e−02 1.1719e−01 9.9965e−01
 pre – 7.3656e−08 1.1760e−07 1.3784e−07 1.5618e−07 1.6593e−07 4.1410e−06

NS

nopre 1.0 7.3695e−03 4.4370e−02 1.5622e−01 8.3582e−02 1.5751e−01 9.9945e−01
 nopre 0.1 8.8126e−01 15.1430e−00 24.3703e−00 1.7591e−00 11.3491e−00 2.2046e−00
 pre 1.0 1.4740e−06 8.7947e−06 5.9979e−06 3.1987e−06 9.7846e−06 7.3386e−06
 pre 0.1 1.7492e−05 1.2692e−04 2.0684e−04 4.7161e−05 1.4152e−04 9.0761e−05

Table 1 shows the achieved relative errors in 𝐿2- and 𝐿∞-norms. Again, the benefits of preconditioning are clearly visible in the
reduction of the final error by several orders of magnitude. In particular, note that for 𝜂 = 0.1 (which corresponds to an increased
Reynolds number) a satisfying accuracy could only be achieved with preconditioning. As Fig. 6 illustrates, there is almost no visible
difference between the NN-based solutions and the pure FEM-based ones in the end.

To further illustrate the effectiveness of the preconditioning, we computed the eigenvalues of the Hessian at the last iteration of
the training of the Stokes equations, once with preconditioning and once without preconditioning. Note that computing the Hessian
using the automatic differentiation machinery in PyTorch is possible, though possibly quite costly, and can only be employed for
small problem sizes. The eigenvalues, and a kernel density estimate, for the two cases, with and without preconditioning, is plotted
in Fig. 4. It is clearly visible that even though our argumentation in Section 2 and the Appendix totally neglected the non-linearity
introduced by the neural networks, the conclusion of clustered eigenvalues still holds. As noted earlier, we assume L-BFGS coupled
with perfect line search to share the same characteristics as the CG method for a nearly quadratic optimization problem. Given that
in our least-squares setting the cluster of zero eigenvalues can be neglected [52], the convergence of the CG algorithm for a quadratic
optimization problem is determined by the number of remaining eigenvalue clusters [45]. Of course, this analysis is not exact, given
that our problem is made non-linear by the neural network and potentially the advection term in the Navier–Stokes equations, and
thus potentially deviates a lot from the aforementioned assumptions. Nonetheless, it clearly demonstrates the mechanisms at work,
indicating the effectiveness of classical preconditioning techniques.

That the assumptions made in the design of the preconditioner are only approximately fulfilled, could not be more visible than
in the high Reynolds number case, as illustrated in Fig. 3. For 𝜂 = 0.01 the advection term clearly dominates, such that the chosen
preconditioner, which takes only the diffusive part into account, performs poorly. The latter is clearly indicated by the increased
number of iterations. Moreover, for higher Reynolds numbers techniques like, e.g, Streamline Upwind Petrov–Galerkin (SUPG)
should be employed to further enhance the numerical properties [45,53].

3.2. The parametric case

In this section, we consider the true parametric problem and train with multiple angles of attack, namely 3, 5, 9, and 17 different
𝜆 distributed equidistantly in the range [1◦, 45◦]. A maximum of 4000 iterations of L-BFGS is used to train the respective networks.

Fig. 7 shows the loss values during training for the different configurations under consideration. Even in this case, preconditioning
is able to accelerate the decay of the loss by more than two orders of magnitude for both the Stokes and the Navier–Stokes equations.
For the Stokes problem, we also performed the experiments on a finer mesh, which is obtained from the original one by a single
uniform refinement and results in 28085 degrees of freedom. The behavior of the losses on the original and the finer mesh can be
9

F. Griese et al. Journal of Computational and Applied Mathematics 469 (2025) 116663
Fig. 6. Results for Navier–Stokes equation trained with an angle of attack 𝜆 = 1◦ and viscosity 𝜂 = 0.1. The first row shows the prediction of the FEM-based
neural network with preconditioning, the second row the reference solution obtained with the FEM, the third row the absolute error of the prediction.

taken as an indication of mesh independence, which is consistent with our expectations from the Appendix and our discussion in
the previous section.

In the following, we will in particular consider the training errors, i.e., the error on the seen training data, as well as generalization
errors: more specifically the errors seen on interpolating input data as well as on extrapolating input data. To evaluate the
interpolation and extrapolation qualities, we test with unseen angles of attack within the training range, 𝜆 ∈ {5◦, 16.5◦, 30◦, 40◦},
and outside the training range, 𝜆 ∈ {47.5◦, 50◦, 55◦}, respectively. Fig. 8 shows the average errors on the training data (‘‘training’’) as
well as the generalization errors (‘‘interpolation’’ and ‘‘extrapolation’’) in 𝐿2- and 𝐿∞-norm for the different sizes of the training set.
For clarity, we only report errors of the velocity in 𝑥-direction as the errors of velocity in 𝑦-direction and pressure behave similarly.
It is clearly visible that preconditioning does not only heavily improve quality of the surrogate model on the training set itself, but
also its inter- and extrapolation capabilities; in fact, the errors obtained without preconditioning are far beyond an acceptable range.
The increase of the training errors for a growing size of the training set for the preconditioned problems is likely due to the fact
that the same network architecture (i.e. the same number of degrees of freedom) is used to solve a increasingly complex problem.
As expected, the generalization errors decrease with increasing training data.

Our findings can be summarized as follows: The use of preconditioned loss functions speeds up the training procedure, both for
linear and nonlinear problems and, moreover, improves the quality of the resulting surrogate models both in terms of training and
generalization errors.

4. Application: Solving an inverse problem related to stationary 2D Navier–Stokes equations

In the following, we demonstrate the relevance of our method by applying it to a prototypical inverse problem related to the
stationary 2D Navier–Stokes equations. This problem corresponds to an application scenario in which pressure measurements from
two sensors on the airfoil are used to determine the angle of attack. Since measurements in a real-world setting are always noisy,
it is crucial to be able to quantify the aleatoric uncertainty coming from this noise. Our goal is to estimate a probability density for
the unknown attack angle 𝜆 associated with these observations. Therefore, we pursue a probabilistic approach and use a Markov
Chain Monte Carlo (MCMC) method in combination with our fully differentiable FEM-based NNs.

Let 𝐲1,… , 𝐲𝑚 ∈ R2 be noisy observations of the pressure at two fixed points of the airfoil. We assume that the two pressure sensors
are located at 8.18% and 99.94% of the chord on the top of the airfoil; see Fig. 9 for an illustration. Moreover, we assume that the
10

F. Griese et al. Journal of Computational and Applied Mathematics 469 (2025) 116663
Fig. 7. Loss values per L-BFGS iteration when training FEM-based NNs for multiple angles of attack #𝜆train with preconditioning (pre) and without preconditioning
(nopre). For the Stokes problem, in addition to the loss behavior for the original mesh, we also show the behavior for a finer mesh.

Fig. 8. Averaged relative 𝐿2- and 𝐿∞-errors of the variable 𝑢𝑥 predicted from FEM-based NNs trained with and without preconditioning for Stokes and Navier–
Stokes (𝜂 = 1) with several numbers of angles of attack #𝜆train and tested with angles of attack inside (interpolation) and outside (extrapolation) the training
range. The dots represent the mean errors, the shadings correspond to the range in which the errors occurred for the given set of testing angles.
11

F. Griese et al. Journal of Computational and Applied Mathematics 469 (2025) 116663
Fig. 9. Left: Location of sensors on airfoil. Right: Pressure 𝑝 at sensor locations for different angles of attack 𝜆 predicted by FEM-based NN.

Fig. 10. Left: Observed pressure measurements 𝑦𝑖 of two sensors. Right: Corresponding posterior distribution of the angle of attack 𝜆 of the airfoil, as generated
with the MCMC algorithm.

measurements are independent and randomly distributed according to a normal distribution with standard deviation 𝜎 = 0.5. We
thus obtain a log-likelihood that modulo some 𝜆-independent constant 𝐶 is given by

log 𝑝(𝑦|𝜆) = 𝐶 −
𝑚
∑

𝑖=1

1
𝜎2

‖�̂�𝜆 − 𝐲𝑖‖2 . (20)

We deliberately use �̂�𝜆 to signify the result of the preconditioned neural network evaluated at just these two measurement points.
Encompassing this likelihood with a uniform prior 𝑝(𝜆) ∼ 𝒰([1◦, 45◦]), we are interested in the resulting posterior distribution
𝑝(𝜆|𝑦) ∝ 𝑝(𝑦|𝜆)𝑝(𝜆).

Given that computations of �̂�𝜆 exhibit a nonlinear dependence on 𝜆, we employ a Hamiltonian Monte Carlo (HMC) method [54,
55], more precisely the No-U-Turn Sampler (NUTS). The latter is a gradient-based MCMC method that approximates the desired
density function. HMC allows to sample from this posterior by using an approximate Hamiltonian dynamics simulation, which is then
corrected by a Metropolis acceptance step. To solve the Hamiltonian differential equation, derivatives of the target posterior density
function with respect to 𝜆 must be computed. Here, an important advantage of neural network-based surrogate modeling comes into
play: the surrogate model is not only differentiable (which may theoretically also be the case with other techniques), but in fact
these derivatives can be computed efficiently using AD. We use the implementation of NUTS that comes with the PyTorch-based
library Pyro [56].

In order to test this method, we choose the following setup: Fig. 9 (right) shows the forward problem of predicting the pressure
at the sensor locations for 17 angles of attack 𝜆 that are equidistantly distributed in the range [1◦, 45◦]. Using this FEM-based NN as
surrogate model, we generate 10 artificial and noisy pressure ‘‘measurements’’ by adding Gaussian noise with a standard deviation
of 0.5 to the respective pressure predictions evaluated at a reference angle of attack of 𝜆 = 5◦. The ‘‘measurements’’ are shown in
Fig. 10.

Fig. 10 displays the 1000 samples of the posterior distribution, generated by MCMC with 1000 warm-up steps. The generated
distribution has an empirical mean of 5.03 and a standard deviation of 0.32. Hence, the combination of MCMC and FEM-based NNs
was able to deliver plausible results for this test case.

5. Conclusion

FEM-based/FEM-inspired neural networks are known to combine the best of two worlds: finite elements and neural networks.
On the one hand, the (parametric) PDE under consideration is discretized by a method that is well-understood and reliable, the
12

F. Griese et al. Journal of Computational and Applied Mathematics 469 (2025) 116663
incorporation of boundary conditions and complex geometries is relatively straightforward. On the other hand, the discretization
benefits from the power of neural networks to handle parameter dependence, e.g., by obtaining a cheap-to-evaluate and fully
differentiable parameter-to-solution map, which can be advantageous in the context of inverse problems.

In this paper, we have advanced this type of technique by applying it for the first time to PDEs from fluid dynamics that result in a
saddle point problem after discretization. In particular, we have introduced a modification of this approach in which preconditioning
applied to the residual loss allows to improve both the speed of training and the resulting accuracy. We have demonstrated the
relevance of our approach with numerical examples on behalf of a prototypical but realistic model problem from fluid dynamics
and a related inverse problem.

Having provided a proof-of-concept for our method in this paper, an interesting goal for future research would be to investigate
the possibilities for the inclusion of, e.g., distributed parallel methods or low-cost preconditioners, as they are typical for large-
scale finite element implementations. Another goal would be to consider other PDEs or PDE systems with different characteristics
(including suitable preconditioners). In particular, the extension to time-dependent problems or to flow problems with higher
Reynolds numbers that require stabilization shall be mentioned.

Acknowledgments

This research was carried out in part during the project PISA (Physics Inspired AI) by the German Aerospace Center (DLR). The
DLR is supported by the Federal Ministry for Economic Affairs and Climate Action (BMWK) on the basis of a decision by the German
Bundestag. Last but not least, the authors want to thank the anonymous reviewers for their valuable comments.

Appendix. Mesh-independent conditioning of the FEM layer for the preconditioned Stokes case

In this appendix, we show that contribution of the matrix in (12) to the loss in (6) is well-conditioned, as far as the last layer of
the NN is concerned. More precisely, we will show that the square of

𝐙 =
[

𝐈 𝐋−1𝐁𝑇𝐌−𝑇

𝐌−1𝐁𝐋−𝑇 𝟎

]

(A.1)

has an eigenvalue distribution that is independent of the mesh resolution. The following derivation is based on [57].

Lemma 1. Consider 𝐘 = 𝐙2 with 𝐙 as given in (A.1), then 𝐘 has the following annihilating polynomial

(𝐘 − 𝐈)
(

(

𝐘 − 3
2
𝐈
)2

− 5
4
𝐈
)

= 0 .

Proof. Introducing 𝐂 = 𝐌−1𝐁𝐋−𝑇 , first note that 𝐘 is given by

𝐘 =
[

𝐈 + 𝐂𝑇𝐂 𝐂𝑇

𝐂 𝐂𝐂𝑇

]

.

The latter can, using the definitions of 𝐋,𝐌,𝐒, be simplified to
𝐂𝐂𝑇 =𝐌−1𝐁𝐋−𝑇𝐋−1

⏟⏞⏟⏞⏟
=𝐀−1

𝐁𝑇𝐌−𝑇

=𝐌−1 𝐁𝐀−1𝐁𝑇
⏟⏞⏟⏞⏟

−𝐒

𝐌−𝑇

=𝐈 .

Furthermore, 𝐏 = 𝐂𝑇𝐂 is a projection operator
𝐂𝐏 =𝐂𝐂𝑇𝐂 = 𝐂
𝐏2 =𝐂𝑇𝐂𝐏 = 𝐂𝑇𝐂 = 𝐏 .

As such, we obtain
(

𝐘 − 3
2
𝐈
)2

=
⎡

⎢

⎢

⎣

(

𝐏 − 1
2 𝐈
)2

+ 𝐏 0

0 5
4 𝐈

⎤

⎥

⎥

⎦

,

which yields
(

𝐘 − 3
2
𝐈
)2

− 5
4
𝐈 =

[

𝐏 − 𝐈 0
0 0

]

.

The conclusion then follows easily from the observation that

𝐘 − 𝐈 =
[

𝐏 𝐂𝑇

𝐂 0

]

. □
13

F. Griese et al. Journal of Computational and Applied Mathematics 469 (2025) 116663
As an immediate consequence of the last Lemma, the distinct eigenvalues of 𝐘 are
{

1, 32 ±
√

5
2

}

, thus clearly bounding the
condition number of the matrix 𝐘.

Data availability

No data was used for the research described in the article.

References

[1] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Netw. 2 (5) (1989) 359–366.
[2] G.E. Karniadakis, I.G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics-informed machine learning, Nat. Rev. Phys. 3 (6) (2021) 422–440.
[3] S. Cuomo, V.S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, F. Piccialli, Scientific machine learning through physics–Informed neural networks: Where we

are and what’s next, J. Sci. Comput. 92 (3) (2022) 88.
[4] Z. Hao, S. Liu, Y. Zhang, C. Ying, Y. Feng, H. Su, J. Zhu, Physics-informed machine learning: A survey on problems, methods and applications, 2023.
[5] D.N. Tanyu, J. Ning, T. Freudenberg, N. Heilenkötter, A. Rademacher, U. Iben, P. Maass, Deep learning methods for partial differential equations and

related parameter identification problems, Inverse Problems 39 (10) (2023) 103001.
[6] M.W.M.G. Dissanayake, N. Phan-Thien, Neural-network-based approximations for solving partial differential equations, Commun. Numer. Methods Eng. 10

(3) (1994) 195–201.
[7] I.E. Lagaris, A. Likas, D.I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw. 9 (5) (1998)

987–1000.
[8] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving

nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[9] A. Griewank, On automatic differentiation and algorithmic linearization, Pesqui. Oper. 34 (2014) 621–645.
[10] S. Wang, Y. Teng, P. Perdikaris, Understanding and mitigating gradient flow pathologies in physics-informed neural networks, SIAM J. Sci. Comput. 43

(5) (2021) A3055–A3081.
[11] E. Kharazmi, Z. Zhang, G.E. Karniadakis, Variational physics-informed neural networks for solving partial differential equations, 2019, arXiv preprint

arXiv:1912.00873.
[12] R. Khodayi-Mehr, M. Zavlanos, VarNet: Variational neural networks for the solution of partial differential equations, in: Learning for Dynamics and Control,

PMLR, 2020, pp. 298–307.
[13] E. Kharazmi, Z. Zhang, G.E. Karniadakis, hp-VPINNs: Variational physics-informed neural networks with domain decomposition, Comput. Methods Appl.

Mech. Engrg. 374 (2021) 113547.
[14] M. Ainsworth, J. Dong, Galerkin neural networks: A framework for approximating variational equations with error control, SIAM J. Sci. Comput. 43 (4)

(2021) A2474–A2501.
[15] H. Gao, L. Sun, J. Wang, PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on

irregular domain, J. Comput. Phys. 428 (2021) 110079.
[16] H. Gao, M.J. Zahr, J. Wang, Physics-informed graph neural Galerkin networks: A unified framework for solving PDE-governed forward and inverse problems,

Comput. Methods Appl. Mech. Engrg. 390 (2022) 114502.
[17] C. Uriarte, D. Pardo, Á.J. Omella, A finite element based deep learning solver for parametric PDEs, Comput. Methods Appl. Mech. Engrg. 391 (2022)

114562.
[18] S. Liu, C. Su, J. Yao, Z. Hao, H. Su, Y. Wu, J. Zhu, Preconditioning for physics-informed neural networks, 2024.
[19] W. Cao, W. Zhang, An analysis and solution of ill-conditioning in physics-informed neural networks, J. Comput. Phys. 520 (2025) 113494.
[20] P. Pantidis, M.E. Mobasher, Integrated finite element neural network (I-FENN) for non-local continuum damage mechanics, Comput. Methods Appl. Mech.

Engrg. 404 (2023) 115766.
[21] N. Margenberg, D. Hartmann, C. Lessig, T. Richter, A neural network multigrid solver for the Navier–Stokes equations, J. Comput. Phys. 460 (2022)

110983.
[22] U. Kapustsin, U. Kaya, T. Richter, A hybrid finite element/neural network solver and its application to the Poisson problem, PAMM 23 (3) (2023)

e202300135.
[23] M. Hintermüller, D. Korolev, A hybrid physics-informed neural network based multiscale solver as a partial differential equation constrained optimization

problem, 2024.
[24] M. Möller, D. Toshniwal, F. van Ruiten, Physics-informed machine learning embedded into isogeometric analysis, in: Mathematics: Key Enabling Technology

for Scientific Machine Learning, Platform Wiskunde, Amsterdam, 2021, pp. 57–59.
[25] S.K. Mitusch, S.W. Funke, M. Kuchta, Hybrid FEM-NN models: Combining artificial neural networks with the finite element method, J. Comput. Phys. 446

(2021) 110651.
[26] P. Ramuhalli, L. Udpa, S.S. Udpa, Finite-element neural networks for solving differential equations, IEEE Trans. Neural Netw. 16 (6) (2005) 1381–1392.
[27] A. Kopaničáková, H. Kothari, G.E. Karniadakis, R. Krause, Enhancing training of physics-informed neural networks using domain decomposition–based

preconditioning strategies, SIAM J. Sci. Comput. 46 (5) (2024) S46–S67.
[28] R.E. Meethal, A. Kodakkal, M. Khalil, A. Ghantasala, B. Obst, K. Bletzinger, R. Wüchner, Finite element method-enhanced neural network for forward and

inverse problems, Adv. Model. Simul. Eng. Sci. 10 (1) (2023) 6.
[29] T. Le-Duc, H. Nguyen-Xuan, J. Lee, A finite-element-informed neural network for parametric simulation in structural mechanics, Finite Elem. Anal. Des.

217 (2023) 103904.
[30] Y. Yamazaki, A. Harandi, M. Muramatsu, A. Viardin, M. Apel, T. Brepols, S. Reese, S. Rezaei, A finite element-based physics-informed operator learning

framework for spatiotemporal partial differential equations on arbitrary domains, 2024.
[31] L. Lu, P. Jin, G. Pang, Z. Zhang, G.E. Karniadakis, Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators,

Nat. Mach. Intell. 3 (3) (2021) 218–229.
[32] A. Peyvan, V. Kumar, Fusion DeepONet: A data-efficient neural operator for geometry-dependent hypersonic flows on arbitrary grids, 2025.
[33] R. Ranade, C. Hill, J. Pathak, DiscretizationNet: A machine-learning based solver for Navier–Stokes equations using finite volume discretization, Comput.

Methods Appl. Mech. Engrg. 378 (2021) 113722.
[34] N. Wandel, M. Weinmann, R. Klein, Teaching the incompressible Navier–Stokes equations to fast neural surrogate models in three dimensions, Phys. Fluids

33 (4) (2021) 047117.
[35] P. Benner, et al. (Eds.), Model Order Reduction, Vols 1-3, De Gruyter, 2022.
[36] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: Yoshua Bengio, Yann LeCun (Eds.), 3rd International Conference on Learning

Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings, 2015.
14

http://refhub.elsevier.com/S0377-0427(25)00177-3/sb1
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb2
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb3
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb3
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb3
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb4
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb5
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb5
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb5
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb6
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb6
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb6
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb7
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb7
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb7
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb8
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb8
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb8
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb9
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb10
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb10
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb10
http://arxiv.org/abs/1912.00873
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb12
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb12
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb12
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb13
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb13
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb13
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb14
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb14
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb14
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb15
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb15
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb15
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb16
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb16
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb16
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb17
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb17
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb17
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb18
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb19
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb20
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb20
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb20
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb21
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb21
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb21
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb22
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb22
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb22
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb23
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb23
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb23
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb24
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb24
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb24
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb25
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb25
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb25
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb26
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb27
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb27
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb27
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb28
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb28
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb28
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb29
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb29
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb29
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb30
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb30
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb30
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb31
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb31
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb31
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb32
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb33
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb33
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb33
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb34
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb34
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb34
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb35
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb36
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb36
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb36

F. Griese et al. Journal of Computational and Applied Mathematics 469 (2025) 116663
[37] D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization, Math. Program. 45 (1) (1989) 503–528.
[38] L. Nazareth, A relationship between the BFGS and conjugate gradient algorithms and its implications for new algorithms, SIAM J. Numer. Anal. 16 (5)

(1979) 794–800.
[39] A. Ern, J. Guermond, Theory and Practice of Finite Elements, vol. 159, Springer, 2004.
[40] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Science, 1969.
[41] I. Babuška, The finite element method with Lagrangian multipliers, Numer. Math. 20 (3) (1973) 179–192.
[42] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, R.A.I.R.O. Anal. Numérique 8

(R-2) (1974) 129–151.
[43] M. Benzi, G. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numer. 14 (2005) 1–137.
[44] T. Rusten, R. Winther, A preconditioned iterative method for saddlepoint problems, SIAM J. Matrix Anal. Appl. 13 (3) (1992) 887–904.
[45] H.C. Elman, D.J. Silvester, A.J. Wathen, Finite Elements and Fast Iterative Solvers, in: Numerical Mathematics and Scientific Computation, Oxford University

Press, 2005.
[46] E.N. Jacobs, K.E. Ward, R.M. Pinkerton, The Characteristics of 78 Related Airfoil Section from Tests in the Variable-Density Wind Tunnel, Technical Report

460, National Advisory Committee for Aeronautics, 1933.
[47] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,

M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch: An imperative style, high-performance deep learning library, in:
Advances in Neural Information Processing Systems 32, Curran Associates, Inc., 2019, pp. 8024–8035.

[48] G. Klambauer, T. Unterthiner, A. Mayr, S. Hochreiter, Self-normalizing neural networks, Adv. Neural Inf. Process. Syst. 30 (2017).
[49] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the Thirteenth International Conference

on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, 2010, pp. 249–256.
[50] I.A. Baratta, J.P. Dean, J.S. Dokken, M. Habera, J.S. Hale, C.N. Richardson, M.E. Rognes, M.W. Scroggs, N. Sime, G.N. Wells, DOLFINx: the next generation

FEniCS problem solving environment, 2023, preprint.
[51] M.S. Alnaes, A. Logg, K.B. Ølgaard, M.E. Rognes, G.N. Wells, Unified form language: A domain-specific language for weak formulations of partial differential

equations, ACM Trans. Math. Softw. 40 (2014).
[52] W.J. Kammerer, M.Z. Nashed, On the convergence of the conjugate gradient method for singular linear operator equations, SIAM J. Numer. Anal. 9 (1)

(1972) 165–181.
[53] A.N. Brooks, T.J.R. Hughes, Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the

incompressible Navier–Stokes equations, Comput. Methods Appl. Mech. Engrg. 32 (1) (1982) 199–259.
[54] M. Betancourt, M. Girolami, Hamiltonian Monte Carlo for hierarchical models, Curr. Trends Bayesian Methodol. Appl. 79 (30) (2015) 2–4.
[55] R. Neal, MCMC using Hamiltonian dynamics, in: Handbook of Markov Chain Monte Carlo, 2012.
[56] E. Bingham, J.P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos, R. Singh, P. Szerlip, P. Horsfall, N.D. Goodman, Pyro: Deep universal

probabilistic programming, J. Mach. Learn. Res. (2018).
[57] M.F. Murphy, G.H. Golub, A.J. Wathen, A note on preconditioning for indefinite linear systems, SIAM J. Sci. Comput. 21 (6) (2000) 1969–1972.
15

http://refhub.elsevier.com/S0377-0427(25)00177-3/sb37
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb38
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb38
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb38
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb39
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb40
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb41
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb42
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb42
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb42
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb43
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb44
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb45
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb45
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb45
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb46
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb46
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb46
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb47
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb47
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb47
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb47
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb47
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb48
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb49
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb49
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb49
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb50
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb50
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb50
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb51
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb51
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb51
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb52
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb52
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb52
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb53
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb53
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb53
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb54
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb55
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb56
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb56
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb56
http://refhub.elsevier.com/S0377-0427(25)00177-3/sb57

	Preconditioned FEM-based neural networks for solving incompressible fluid flows and related inverse problems
	Introduction
	Structure of the paper

	Preconditioned loss functions for physics-informed, FEM-based neural networks
	Problem statement
	Proposed Method
	Example 1: Stokes equations in 2D
	Example 2: Stationary Navier–Stokes equations in 2D

	Numerical results
	The non-parametric case
	The parametric case

	Application: Solving an inverse problem related to stationary 2D Navier–Stokes equations
	Conclusion
	Acknowledgments
	Appendix. Mesh-independent conditioning of the FEM layer for the preconditioned Stokes case
	Data availability
	References

