elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Deep learning on 3D point clouds for fast pose estimation during satellite rendezvous

Renaut, Léo und Frei, Heike und Nüchter, Andreas (2025) Deep learning on 3D point clouds for fast pose estimation during satellite rendezvous. Acta Astronautica, 232, Seiten 231-243. Elsevier. doi: 10.1016/j.actaastro.2025.03.009. ISSN 0094-5765.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
2MB

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0094576525001638

Kurzfassung

Light detection and ranging (lidar) is valuable during non-cooperative space rendezvous scenarios. By processing the 3D point clouds, it is possible to provide a navigation solution, consisting of an estimate of the relative pose of the approached spacecraft. To enable a safe rendezvous, the pose estimation has to be precise, but also robust if the output is used as a primary navigation solution. Navigation has to be performed in real-time, and onboard computing hardware has a reduced processing capability. Therefore, the real-time requirement is a main driver of the design. Additionally, a spacecraft often has a symmetrical shape. In this case, the pose estimation method has to account for the fact that multiple attitudes represent the same configuration. This work investigates the use of a point-based neural network, or 3D neural network, for the pose estimation task. This network is integrated in a full pose estimation pipeline, where every component is optimized to achieve real-time requirements on a representative onboard computing hardware. After pre-processing, the neural network produces a relative position and attitude estimation in a single-stage, where the attitude estimation considers the symmetries of the spacecraft. Furthermore, a high-fidelity lidar simulator is used, which enables to generate an extensive synthetic dataset. The method is trained and optimized solely on synthetic data. After training, the pose estimation is evaluated on real lidar data acquired at a hardware-in-the-loop rendezvous facility. Results highlight that the method is accurate and robust, without a loss in performance when evaluated on real data. Finally, the flight-readiness is demonstrated by runtime evaluations on an onboard computer candidate, showing that the method is suited for real-time processing.

elib-URL des Eintrags:https://elib.dlr.de/213609/
Dokumentart:Zeitschriftenbeitrag
Titel:Deep learning on 3D point clouds for fast pose estimation during satellite rendezvous
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Renaut, LéoLeo.Renaut (at) dlr.dehttps://orcid.org/0000-0002-0726-299X181792688
Frei, HeikeHeike.Frei (at) dlr.dehttps://orcid.org/0000-0003-0836-9171NICHT SPEZIFIZIERT
Nüchter, Andreasandreas.nuechter (at) uni-wuerzburg.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:22 März 2025
Erschienen in:Acta Astronautica
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:232
DOI:10.1016/j.actaastro.2025.03.009
Seitenbereich:Seiten 231-243
Verlag:Elsevier
ISSN:0094-5765
Status:veröffentlicht
Stichwörter:Lidar, Rendezvous, Non-cooperative, Pose estimation
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt RICADOS++
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Raumflugbetrieb und Astronautentraining
Hinterlegt von: Renaut, Leo Tullio Richard
Hinterlegt am:08 Apr 2025 08:22
Letzte Änderung:08 Apr 2025 08:22

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.