elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

CNN-based Pose Estimation of a Non-Cooperative Spacecraft with Symmetries from Lidar Point Clouds

Renaut, Léo und Frei, Heike und Nüchter, Andreas (2025) CNN-based Pose Estimation of a Non-Cooperative Spacecraft with Symmetries from Lidar Point Clouds. IEEE Transactions on Aerospace and Electronic Systems. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TAES.2024.3517574. ISSN 0018-9251.

[img] PDF - Postprintversion (akzeptierte Manuskriptversion)
9MB

Offizielle URL: https://ieeexplore.ieee.org/abstract/document/10801205

Kurzfassung

Light detection and ranging (lidar) sensors provide accurate 3D point clouds for non-cooperative spacecraft pose estimation. Several robust methods such as Iterative Closest Point (ICP) exist to perform a local refinement of the pose starting from an initial estimate. However, finding the initial pose of the spacecraft is a global optimization problem which is challenging to solve in real-time. This is especially true on space hardware with limited computing power. In addition, many spacecrafts have a shape with multiple symmetries, making an unambiguous initial pose estimation impossible. This work introduces a Convolutional Neural Network (CNN) based pose estimation method, accounting for potential symmetries of the target satellite. The point clouds are projected to a 2D depth image before being processed by the network. To generate a sufficient amount of training data, a lidar simulator integrating multiple effects such as reflections or laser beam divergence is developed. While being trained solely on synthetic point clouds, the pose estimation method shows to be precise, efficient and reliable when evaluated on real point clouds taken at a hardware-in-the-loop rendezvous test facility. A runtime evaluation on potential space computing hardware is also performed to demonstrate the applicability of the method to real-time onboard pose estimation.

elib-URL des Eintrags:https://elib.dlr.de/213607/
Dokumentart:Zeitschriftenbeitrag
Titel:CNN-based Pose Estimation of a Non-Cooperative Spacecraft with Symmetries from Lidar Point Clouds
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Renaut, LéoLeo.Renaut (at) dlr.dehttps://orcid.org/0000-0002-0726-299X181793188
Frei, HeikeHeike.Frei (at) dlr.dehttps://orcid.org/0000-0003-0836-9171NICHT SPEZIFIZIERT
Nüchter, Andreasandreas.nuechter (at) uni-wuerzburg.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2025
Erschienen in:IEEE Transactions on Aerospace and Electronic Systems
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1109/TAES.2024.3517574
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0018-9251
Status:veröffentlicht
Stichwörter:Non-cooperative spacecraft, Pose estimation, Lidar, CNN
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt RICADOS++
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Raumflugbetrieb und Astronautentraining
Hinterlegt von: Renaut, Leo Tullio Richard
Hinterlegt am:08 Apr 2025 08:26
Letzte Änderung:08 Apr 2025 08:26

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.