elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Robotic Skill Learning Using Riemannian Task-Parameterized Kernelized Movement Primitives

Kücükgenc, Cem (2025) Robotic Skill Learning Using Riemannian Task-Parameterized Kernelized Movement Primitives. Studienarbeit, Technical University of Munich.

[img] PDF - Nur DLR-intern zugänglich
23MB

Kurzfassung

Robotic skill learning has gained prominence as robots evolve from executing controlled, repetitive tasks to operating in complex and unpredictable environments. Traditional hand-crafted motion design methods fall short in such settings, prompting the need for data-driven approaches such as imitation learning and reinforcement learning. However, existing methods often encounter challenges in generalizing to unforeseen conditions. Recent studies have shown that accurately modeling manifold-valued data such as orientations and poses instead of confining analysis in Euclidean space can substantially improve the generalization of learned skills. Moreover, combining this intrinsic geometric modeling with task parametrization further enhances robustness in unfamiliar environments. This thesis addresses these limitations by integrating Riemannian geometry into Kernelized Movement Primitives with task parametrization. In particular, a novel method Riemannian Task-Parameterized Kernelized Movement Primitives (Riemannian TP-KMPs) is introduced and Single Tangent Space Task-Parameterized Kernelized Movement Primitives (STS TP-KMPs) is used for comparison. This approach leverages the intrinsic geometric structure of manifold-valued data to robustly generalize complex movements, thereby enhancing the adaptability and robustness of learned skills in various environments. The methods are evaluated through both simulation and real-robot experiments focused on a specific task, with their performance being analytically compared. The results indicate that explicitly modeling the intrinsic geometry of robotic data in conjunction with task parametrization offers a compelling alternative for advancing robotic skill learning and generalization.

elib-URL des Eintrags:https://elib.dlr.de/213524/
Dokumentart:Hochschulschrift (Studienarbeit)
Titel:Robotic Skill Learning Using Riemannian Task-Parameterized Kernelized Movement Primitives
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kücükgenc, CemNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:März 2025
Erschienen in:Robotic Skill Learning Using Riemannian Task-Parameterized Kernelized Movement Primitives
Open Access:Nein
Seitenanzahl:70
Status:veröffentlicht
Stichwörter:Robotic Skill Learning; Learning from Demonstration; Riemannian Mani- folds; Single Tangent Space; Kernelized Movement Primitives; Task-Parametrization
Institution:Technical University of Munich
Abteilung:School of Engineering and Design
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Erklärbare Robotische KI
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013)
Hinterlegt von: Mühlbauer, Maximilian Sebastian
Hinterlegt am:07 Apr 2025 08:52
Letzte Änderung:07 Apr 2025 08:52

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.