Vinge, Rikard und Zappacosta, Antony und Jancauskas, Vytautas und Wiemer, Gauvain und Marki, Alexandra und Oelker, Julia und Schlundt, Michael (2025) Machine Learning-Based Quality Control for Oceanographic Sensor Data. Helmholtz AI Conference 2025, 2025-06-03 - 2025-06-05, Karlsruhe, Germany.
![]() |
PDF
797kB |
Kurzfassung
Ensuring the quality of oceanographic underway data is critical for accurate environmental monitoring and climate research. Traditional quality control (QC) methods often require expert knowledge and manual intervention. This study explores the potential of using Random Forest models to automate and enhance QC processes for oceanographic sensor data. A Random Forest Regressor is trained to model key variables, including temperature and salinity, while a Balanced Random Forest Classifier is used to predict QC flags, distinguishing data points of good and bad quality. Experimental results demonstrates strong regression performance on a held-out test set, with R2 values between 0.84 and 0.95 and good generalizability to previously unseen geographic regions. Classification results varies, with salinity quality flags achieving a balanced accuracy of 93%, while temperature quality flag predictions achieves 81% balanced accuracy, suffering from a higher false-negative rate. Analyzing the models using Explainable AI methods shows that the temperature quality flag classification overfits to the location of the vessel, which the regression model and salinity quality flag classification do not. These findings indicate that machine learning can effectively replicate traditional QC methods and improve efficiency by reducing manual workload, though further refinement is needed to improve the performance.
elib-URL des Eintrags: | https://elib.dlr.de/213329/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||||||||||
Titel: | Machine Learning-Based Quality Control for Oceanographic Sensor Data | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 21 März 2025 | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Machine Learning, Quality Control, Oceanographic Sensor Data, Random Forest | ||||||||||||||||||||||||||||||||
Veranstaltungstitel: | Helmholtz AI Conference 2025 | ||||||||||||||||||||||||||||||||
Veranstaltungsort: | Karlsruhe, Germany | ||||||||||||||||||||||||||||||||
Veranstaltungsart: | nationale Konferenz | ||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 3 Juni 2025 | ||||||||||||||||||||||||||||||||
Veranstaltungsende: | 5 Juni 2025 | ||||||||||||||||||||||||||||||||
Veranstalter : | Helmholtz AI | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, R - Spektroskopische Verfahren der Atmosphäre, R - Atmosphären- und Klimaforschung | ||||||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Vinge, Rikard | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 30 Jun 2025 09:52 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 30 Jun 2025 09:52 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags