Liu, Chenying und Albrecht, Conrad M und Wang, Yi und Zhu, Xiao Xiang (2025) CromSS: Cross-modal pretraining with noisy labels for remote sensing image segmentation. IEEE Transactions on Geoscience and Remote Sensing, 14 (8), Seiten 1-17. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2025.3552642. ISSN 0196-2892.
|
PDF
- Verlagsversion (veröffentlichte Fassung)
5MB |
Kurzfassung
We explore the potential of large-scale noisily labeled data to enhance feature learning by pretraining semantic segmentation models within a multi-modal framework for geospatial applications. We propose a novel Cross-modal Sample Selection (CromSS) method, a weakly supervised pretraining strategy designed to improve feature representations through cross-modal consistency and noise mitigation techniques. Unlike conventional pretraining approaches, CromSS exploits massive amounts of noisy and easy-to-come-by labels for improved feature learning beneficial to semantic segmentation tasks. We investigate middle and late fusion strategies to optimize the multi-modal pretraining architecture design. We also introduce a cross-modal sample selection module to mitigate the adverse effects of label noise, which employs a cross-modal entangling strategy to refine the estimated confidence masks within each modality to guide the sampling process. Additionally, we introduce a spatial-temporal label smoothing technique to counteract overconfidence for enhanced robustness against noisy labels. To validate our approach, we assembled the multi-modal dataset, NoLDOS-12, which consists of a large-scale noisy label subset from Google’s Dynamic World (DW) dataset for pretraining and two downstream subsets with high-quality labels from Google DW and OpenStreetMap (OSM) for transfer learning. Experimental results on two downstream tasks and the publicly available DFC2020 dataset demonstrate that when effectively utilized, the low-cost noisy labels can significantly enhance feature learning for segmentation tasks. The data, codes, and pretrained weights are freely available at https://github.com/zhu-xlab/CromSS.
| elib-URL des Eintrags: | https://elib.dlr.de/213323/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
| Titel: | CromSS: Cross-modal pretraining with noisy labels for remote sensing image segmentation | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | 2025 | ||||||||||||||||||||
| Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||
| Band: | 14 | ||||||||||||||||||||
| DOI: | 10.1109/TGRS.2025.3552642 | ||||||||||||||||||||
| Seitenbereich: | Seiten 1-17 | ||||||||||||||||||||
| Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
| ISSN: | 0196-2892 | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | pretraining, noisy labels, semantic segmentation, multi-modal deep learning, sample selection, SSL4EO-S12 dataset, geospatial artificial intelligence | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung, R - Künstliche Intelligenz | ||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
| Hinterlegt von: | Albrecht, Conrad M | ||||||||||||||||||||
| Hinterlegt am: | 04 Apr 2025 09:21 | ||||||||||||||||||||
| Letzte Änderung: | 09 Apr 2025 13:53 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags