Iz, Selim Ahmet und Guvenkaya, Okan Arif und Unel, Mustafa (2024) Local Path Planning with Dynamic Obstacle Avoidance in Unstructured Environments. In: IECON 2024 - 50th Annual Conference of the IEEE Industrial Electronics Society. IEEE. IECON 2024 - 50th Annual Conference of the IEEE Industrial Electronics Society, 2024-11-03 - 2024-11-06, Chicago, USA. doi: 10.1109/IECON55916.2024.10906050. ISBN 978-1-6654-6454-3.
![]() |
PDF
2MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10906050
Kurzfassung
Obstacle avoidance and path planning are essential for guiding unmanned ground vehicles (UGVs) through environments that are densely populated with dynamic obstacles. This paper develops a novel approach that combines tangentbased path planning and extrapolation methods to create a new decision-making algorithm for local path planning. In the assumed scenario, a UGV has a prior knowledge of its initial and target points within the dynamic environment. A global path has already been computed, and the robot is provided with waypoints along this path. As the UGV travels between these waypoints, the algorithm aims to avoid collisions with dynamic obstacles. These obstacles follow polynomial trajectories, with their initial positions randomized in the local map and velocities randomized between 0 and the allowable physical velocity limit of the robot, along with some random accelerations. The developed algorithm is tested in several scenarios where many dynamic obstacles move randomly in the environment. Simulation results show the effectiveness of the proposed local path planning strategy by gradually generating a collision free path which allows the robot to navigate safely between initial and the target locations.
elib-URL des Eintrags: | https://elib.dlr.de/213280/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Local Path Planning with Dynamic Obstacle Avoidance in Unstructured Environments | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 3 November 2024 | ||||||||||||||||
Erschienen in: | IECON 2024 - 50th Annual Conference of the IEEE Industrial Electronics Society | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IECON55916.2024.10906050 | ||||||||||||||||
Verlag: | IEEE | ||||||||||||||||
ISBN: | 978-1-6654-6454-3 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Dynamic Obstacle Avoidance, Extrapolation, Local Path Planning, Dynamic Environment | ||||||||||||||||
Veranstaltungstitel: | IECON 2024 - 50th Annual Conference of the IEEE Industrial Electronics Society | ||||||||||||||||
Veranstaltungsort: | Chicago, USA | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 3 November 2024 | ||||||||||||||||
Veranstaltungsende: | 6 November 2024 | ||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Impulsprojekt Resiliente Technologien für den Katastrophenschutz (RESITEK) [EO] | ||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||
Institute & Einrichtungen: | Institut für Optische Sensorsysteme > Sicherheitsforschung und Anwendungen | ||||||||||||||||
Hinterlegt von: | Iz, Selim Ahmet | ||||||||||||||||
Hinterlegt am: | 24 Mär 2025 07:05 | ||||||||||||||||
Letzte Änderung: | 24 Mär 2025 07:05 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags